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Equazioni differenziali ordinarie. —  Periodic solutions of a cer
tain fourth order differential equation. Notaci di J a m e s  O. C. E z e i l o , 

presentata dal Socio G. S a n s o n e .

R iassu n to . — Si dimostrano teoremi di esistenza di soluzioni periodiche per due classi 
di equazioni differenziali ordinarie non lineari.

i . In t r o d u c t io n

Consider the equation:

( i . 1) x (4) +  ax x  +  g  (•£) x  +  az x  +  h (x , x  , x , x) =  p  (f)

in which at , az are constants; g  , h and p  are continuous functions depending 
only on the arguments shown, with p  co-periodic in t, that is p  (t-\- co) =  p  (t) 
for some co >  o and for arbitrary t. The existence of an co-periodic solution 
of (1.1) for the special case in which h is bounded, that is | h (x , y  , z  , u) | <  H 
(constant) for arbitrary x  , y  , z  and u , has attracted the interest of researchers 
in recent times. Tejumola [2] for example, generalizing an earlier result of 
himself [1] for the same equation (1.1), showed that if a, , az are both positive 
and if the following conditions are satisfied:

h ( x  y y  , z yu) sgn x  >  o , (| x  | >  1) ,
y( J g  ( n ) d7l — œ ffa sy j  s g n j  oo as | ^ | - > o o ,

°

t

0/ p  (s) d s <  a0 (constant) for ail t ,

(1.2)

0 -3)

0 -4)

then (1.1) admits of, at least, one co-periodic solution. Note that, because of 
the co-periodicity of p, the condition (1.4) is equivalent to the following:

(Ù

(i-5) J p ( s ) d s = o .
0

Also, by replacing t by — t in ( i.i) , it is clear that one can assume aL , az 
both negative so that Tejumola’s existence result can, more generally, be 
said to hold for ( i.i) , w ith^-, h and p  subject to (1.2), (1.3) and (1.4) (or (1.5)), 
if az > 0 .  (*)

(*) Pervenuta all’Accademia il 20 settembre 1977.
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The question arising therefrom is whether co-periodic solutions of (1.1) 
exist when ^ ^ < 0  and under what conditions on g , p  and h remaining 
as before. It turned out from our investigation that the treatm ent is indeed 
extendable to the more general equation:

(1.6) x i4) +■ ax % +  g (fi) x +  T (fi) $  +  h (x , x  , x , x , f) =  p  (t)

in which y (x ) is a continuous function depending only on x  and h , which
depends (continuously) on all the arguments shown (which now include t), 
is co-periodic in t (that is: h (x , y  , z , u , t +  co) =  h (x , y  , z  , u  , t) for arbi
trary  x  t y  , 2 , u , f) and is bounded, as before, that is:

(1.7) I h (x , y  , z  , ^ , f) I <  H (constant) for all x , y  , z } u , t .

Our answer to the question is summed up in the following

THEOREM i. Given that (1.5) and (1.7) holdy suppose that a ^ o  and that

(i) there is a constant 8, with o <  S <  4 tz2 oa~2, such that

(1.8) d f x^{x) <  S fo ra li  x >

(ii) h satisfies the condition

(1.9) h (x , y  , z  , u , f) sgn x >  o (| x  | >  1) .

Then the equation (1.6) admits of at least one co-periodic solution fo r  all arbitrary 
continuous g  (x) .

Observe that the lower bound restriction on h sgn x here in (1.9) is weaker 
than the corresponding one in (1.2) used by Tejumola in [1] and [2].

We have also, while at it, looked at the equation (1.6) outside the context 
of a mere generalization of the condition: ax az <  o for the equation (1.1), 
and one other existence result which we were able to establish, with practi
cally the same tools as for Theorem 1, is the following:

Theorem 2. Given that (1.5), (1.7) and (1.9) hold, suppose that, ax f̂i o 
and that

(1.10)
0

where a2 is a constant. Then the equation (1.6) admits of at least one tù-periodic 
solution fo r  all arbitrary continuous g  (x).

Note that, although hypothesis (i) of Theorem 1 has effectively covered 
the case ax aB <  o which was the starting point of the problem the provisions 
of the hypothesis actually go beyond that context to show that there are cases 
y s= aB (constant) with ax az >  o dealt with in [1], [2] for which the condition 
(1.3) on g  is quite superfluous. For example, if y =  a3 in (1.6) with 
o <  aH a f 1 <  4 Tec*)“2 hypothesis (i) of Theorem 1 would be fully met and the 
existence result would therefore hold for all arbitrary g  (x). Again, while

r  (*)| - Y (s) di* <  a2 for  all ^
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hypothesis (i) of Theorem I imposes a requirement that y (x) be bounded 
above or below according as ax >  o or <  o, a consideration of the function 
y == x  cos x2 which satisfies (1.10) (since T(x) =  \  sin x2) of Theorem 2 shows 
that there are nevertheless cases of (1.6) with y not bounded (above or below) 
for which <o-periodic solutions exist for all arbitrary (ir). It should be finally 
remarked that the condition ax 9^ o cannot in general be dropped in either 
theorem as is best illustrated by a consideration of the equation

x (4) +  x =  cost

(corresponding to ^i =  o , y = o , ^  =  i and h == o in (1.6)) which has no 
periodic solutions whatever.

2. Comments on the procedure

The proof of either theorem will be by the Leray-Schauder fixed point 
technique, just as in [1] and [2] except that here it will be convenient to take, 
for our parameter-dependent equation, the equation:

(2.1) x (4)-\- a^x-^r [Lg(£)x +  [iy(x)£ +  (1 — fx) a±x +  \xh ( x ,■£, x ,  x , t )  =  y.p(t)

in which is an arbitrarily chosen, but fixed, positive constant. We note 
that, as is usual in these cases, the parameter-dependent equation (2.1) reduces 
to (1.6) when the param eter (x — 1 and to a constant-coefficient equation 
namely:

(2.2) x {4) +  aL x +  a4x =  o

when [x =  o. The equation (2.1) m ay also be taken in the system form:

(2.3) X =  AX +  [xF (X , f)

with the 4-vectors X , F and 4X4. m atrix A defined by:

where y = £ i z =  x , ' u  =  x  and

=  ty(x , y  , z  , u  , t )  =  a4 x — y y  (x) — zg (y)  — h ( x  , y  , z  , u  , t )  +  p  00 •

The eigenvalues of A can be verified to be the roots of the auxiliary equation 
of (2.2) namely:

(2.4) Y4 +  aL Y3 +  4̂ =  o

with a4 >  o it is clear that (2.4) has no roots whatever of the form y =  zß 
(ß real) and so the matrix (e~(ùA — I), I being the identity 4X 4 matrix, is
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clearly invertible and so by adapting an argument in [4; 27-28] it is easily 
deduced that X  =  X  (t) is an co-periodic solution of (2.3) if and only if X 
satisfies the equation

(2.5) X  =  imT X

where

(2.6) (TX) 00 =  J  (<raA — I) 1 e(t~g)A F (X (s) , s ) d s  .
t

The situation here is thus exactly as in [3; § 2]., except that the vectors 
here are 4-vectors and the matrices 4X 4 matrices, and the same arguments 
indeed as in [3] can be extended to show that the existence of an co-periodic 
solution of (1.6).will follow if an a priori bound (in the standard uniform norm) 
independent of [i. can be established for all co-periodic solutions X of (2.5) 
with (i.G (o , 1), that is

(2.7) Il X II <  D

with D independent of [x,e (o , 1). We shall actually here stop merely with 
verifying that there exists a constant D independent of (j1 such that, for any 
co-periodic solution X =  col (x , y  , z  , u) of (2.5),

(2.8) max I # (£) I <  D , max | y  (t) | <  D and max | z ( t )  | <  D
(T <  t <  T +  CO)

for some t . For suppose indeed that (2.8) holds, then because of (1.7) the 
last entry in the definition of the vector F is bounded for all t e  [t , t +  co]; 
and therefore because of the definition (2.6) the vector TX is bounded (in 
the usual norm) by a constant independent of fi. whose magnitude depends 
on D, so that since, anyway, || X || <  || TX || for all solutions of (2.5) with 
jag (o , 1) the required a priori bound (2.7) follows if (2.8) holds.

Summing, up then, it is now clear from the foregoing that for our proof 
of either theorem it will suffice to concentrate on the equation (2.1) and to 
prove simply that there exists a constant D >  o independent of [Ji such that

(2.9) I ^  (t) I <  D , I % (t) I <  D , I ôc (/) I <  D ( t <  t <  t  +  co) 

for any aperiodic solution of (2.1) with \ie  (o , 1).

3. Comments on the notation

Let a5 =  max | p  (t) |.
0<*<6>

In what follows the capitals D , Dx , D2 , • • • denote positive constants 
whose magnitudes depend only on a0 , ax , a2 , a4 , ah , H , y and g  but cer
tainly not on [i. Unnum bered D ’s do not always have the same value in each 
place of occurence, but each of the numbered : Dx , D 2, • • • retains a fixed 
indentity throughout.

14. — RENDICONTI 1977, voi. LXIII, fase. 3-4.
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4. Proof of Theorem i

Let x  =  x  (t) be any co-periodic solution of (2.1). It is convenniet to 
start by establishing for x  the middle inequality in (2.9).

For this we will require the result

(4 - 0

T + C O  T +C O

4 7T2 j x 2 d t  <  co2 j x2 At

which derives exclusively from the co-periodicity of x  and the usual consi
deration of the Fourier series expansions of x  and x.

The key however to our estimate of \$  (t) | is the direct result of m ulti
plying both sides of (2.1) by % and integrating with respect to t. Since

x2 d tj £x(i) dt =  £x  — \  x2 , j £x At =  %x — j &
X

J x X d t  =  i x 2 , —  j  dv] =  %g(£) x ,
0

and x  is co-periodic, the integration shows at once that
T + C O  T + C O  T  +  CO

(4.2) j x2 At — [laï1 j y (x) x 2 dt =  [iaT1 j {h — p) x A t .
T T  T

Now, by
T + C O  T +C O

— aTl\  ^ ( ^ ) ^ 2d ^ > — $ j t 2 At
T  T

T + C O

Sco2 n2 j x2 A t,>

by (4.1). Thus we have from (4.2), with [xe (o , 1), h and p  being bounded, 
that

T + C O  T + C O

^ 1 ---- — Sco2 tc~2|  J  X2 At < d J  I % I At
T  T

T + C O  .

< d ( J ^  ,

by Schwarz’s inequality, so that, since 8 < 4 tu2co"2,
T + C O  T + C Oj x2 At <  D  ̂j x 2 d/^
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and therefore, by (4.1),
T + C O  T  +  CO

(4.3) J  x2 dt <  D  ̂J  x2 •
T  T

Hence

(44)

T + < 0

T

d* <  D .

Now, since x  (o) =  ^  (co), it is clear that x  ( t0) =  o for some T0 e  fo , co]. 
Thus

and therefore

£ (O =  x ( t 0) +  j x (/) ds
t T0

=  x (s) ds- 

To

max
0 < t<(ù

*()+<*

\£ (t) \  — J* I I
T 0  T + C Ù

T

by Schwarz’s inequality. Hence

(4.5) max I x  (£)| <  Dj ,
0 < t < CO

by (4.4)
We are in! a position to tackle the first estimate in (2.9). The main tool 

here is the result:
CO

(4.6) J  {(I — il) a4 x  +  ytâ(x , £  , x  , x  , t)} dt =  o (o <  y. <  1)
0

obtained from (2.1) by integrating directly and using (1.5) as well as the 
co -periodicity of It is not difficult to see from,(4.6) that | x  (tì) | <  1 for some
Tj6 fo , co]. For, in the contrary case: | x  (t) | >  1 for all t} we would have 
by (1.9) that the left handside of (4.6) is strictly non zero for o <  [x <  1 in 
manifest contradiction of (4.6) itself. Hence | x  ( t^  | <  1 for some Tj 6 [o , co] 
and thus, since

t 'f*
x  (f) ^  x  (tj) -T J £ (/) ds ,

Ti
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we have that Tl+6i

(4.7) max I x  (t) I < i + | "  I x  (s) | ds <  1 -f- D 1 co
V

by (4.5).
It remains now to establish the last inequality in (2.9). For this purpose 

let us set (2.1) in the form

(4.8) x '4) +  x =  Q

where
Q =  tLp — \xg (x) x —  w ( x ) x  —  (1 — [i.) aA X — [Ik .

Because of (4.5), (4-7) and (1.7), and with (jlg (o , 1), it is clear that

I Q I ^  I  ̂ I "h •
Thus if we multiply both sides of (4.8) by x  and integrate we have, x  being 
6)»periodict that

T + Û )  T + Û )  T + < 0

j  x 2 ài <  I a ï 11 ^D2 j  I x  I I x  I dt +  D 3 J  \ x  \ d ^
T  T  T

T + û )  T + W  T + t ù

< D 4 ( J *  ( f  difj -\~ D f) ^ j  xz
T  T  T

by Schwarz’s inequality. Hence, by (4.3),
T + Cù T+6) ^

j  x2 dt <  D6  ̂j  X2 d^j
\  T

which shows at once that
T  +  OO

(4.9) j  x 2 dt <  D7
- ........................ T

for some D7. Thus since x  (t)  =  o for some t  we have from the identity:
t

x (t) =  x  (t) +  J.% (s) ds

that

(4.10) max x*(/)| < J 1*0)! ds
T  T + C ù  x

<  (J  ̂j. x2 (s) d^ j  ,

^  d 8
by (4.9).

The estimates (4.5), (4.7) and (4.10) establish (2.9) and Theorem 1 then 
follows as was pointed out in § 2._
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5. Proof of Theorem 2

The procedure is exactly as in § 4 except that, in order to utilize the 
hypothesis (1.10) it is useful to note that

j -  y (#) à2 dt =  xT(x)  — xT(x) d t ,

so that (4.2), in view of the co-periodicity of x, also implies that
T  +  CÙ T - f  CO

T
x 2 dt +  (j1er1

T-j-CO

dt (h — p) % d t .

By (1.10) this leads in turn to the result:

( s -0
T+CÙ

j x2dt <  D

T

. T  +  (0  T -f-(ù

ÇJ* I x I dt +  J  \# \  d^j

r r
T + CO

T

by (4.1) and Schwarz’s inequality, thus bringing us to the stage (4.3) of Theo
rem I , from which point the rest of the proof of Theorem 2 can now follow 
exactly as in § 4.
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