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Equazioni differenziali ordinarie. — Periodic solutions of a cer-
tain fourth order differential equation. Nota® di James O.C. EzEgiLo,
presentata dal Socio G. SANSONE.

RIASSUNTO. — Si dimostrano teoremi di esistenza di soluzioni periodiche per due classi
di equazioni differenziali ordinarie non lineari.

I. INTRODUCTION

Consider the equation:
(1.1) W d g X+ g@Etayx+h(x,2,%8,8) =790

in which @, , a; are constants; g, %2 and p are continuous functions depending
only on the arguments shown, with p w-periodic in #, that is p ¢+ «) = 2 (¢)
for some ® > o and for arbitrary z. The existence of an w-periodic solution
of (1.1) for the special case in which % is bounded, thatis |2 (x,y,z,%) | < H
(constant) for arbitrary x , ¥ , # and #, has attracted the interest of researchers
in recent times. Tejumola [2] for example, generalizing an earlier result of
himself [1] for the same equation (1.1), showed that if @, , @3 are do#% positive
and if the following conditions are satisfied:

(1.2) h(x,y,2,4)sgnx >0 (x| =1),
(1.3) (fg@)dn—aflaay)sgny—*oo as |y |—> oo,
0
4 i
(1.4) fp(x) ds j < a, (constant) for all #,
[

then (1.1) admits of, at least, one w-periodic solution. Note that, because of
the w-periodicity of p, the condition (1.4) is equivalent to the following:

(1.5) fp (s)ds=o0.

Also, by replacing # by — ¢ in (1.1), it is clear that one can assume &, , a3
both negative so that Tejumola’s existence result can, more generally, be
said to hold for (1.1), with g, Z and p subject to (1.2), (1.3) and (1.4) (or (1.5)),
if @y ag > o.

(*) Pervenuta all’Accademia il 20 settembre 1977.
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The question arising therefrom is whether w-periodic solutions of (1.1)
exist when @; @3 < o and under what conditions on g, p and % remaining
as before. It turned out from our investigation that the treatment is indeed
extendable to the more general equation:

(1.6) 2y F gD E+y@EFh(x,2,5,8,0) =70

in which v (x) is a continuous function depending only on x and %, which
depends (continuously) on all the arguments shown (which now include #),
is w-periodic in # (thatis: 2(x ,y,2,u,t +w)=4A(x,y,2,%,?) for arbi-
trary x,¥,2,%,¢) and is bounded, as before, that is:

(1.7) |2(x,y,2,2,) | <H (constant) for all x,y,z,u,t.
Our answer to the question is summed up in the following
THEOREM 1. Grven that (1.5) and (1.7) hold, suppose that a, o and that
(i) there is a constant 8, with 0 < § < 4 1 w2, such that
(1.8) aty(®) <8  forall x,
(i) % satisfies the condition
(1.9) h(x,y,z,u,)sgnx =0 (Jx|=1).

Then the equation (1.6) admits of at least one o-periodic solution for all arbitrary
continnous g (%) .

Observe that the lower bound restriction on 4 sgn x here in (1.9) is weaker
than the corresponding one in (1.2) used by Tejumola in [1] and [2].

We have also, while at it, looked at the equation (1.6) outside the context
of a mere generalization of the condition: #; a3 << o for the equation (1.1),
and one other existence result which we were able to establish, with practi-
cally the same tools as for Theorem 1, is the following:

THEOREM 2. Given that (1.3), (1.7) and (1.9) hold, suppose that, a, 70
and that

<a, for all x

(i) 1F<x>|sz<s>ds

where ay 1s a constant. Then the eguation (1.6) admits of at least one w-periodic
solution for all avbitrary continuous g (%).

Note that, although hypothesis (i) of Theorem 1 has effectively covered
the case @; a3 << o which was the starting point of the problem the provisions
of the hypothesis actually go beyond that context to show that there are cases
vy = a, (constant) with &, a3 > o dealt with in [1], [2] for which the condition
(1.3) on g is quite superfluious. For example, if y =a; in (1.6) with
0 < @y a7 < 4 w2 hypothesis (i) of Theorem 1 would be fully met and the
existence result would therefore hold for a// aréditrary g (%). Again, while
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hypothesis (i) of Theorem 1 imposes a requirement that y (x) be bounded
above or below according as ¢, > 0 or < 0, a consideration of the function
Yy = x cos 2* which satisfies (1.10) (since I'(#) = % sin #*) of Theorem 2 shows
that there are nevertheless cases of (1.6) with y not bounded (above or below)
for which w-periodic solutions exist for all arbitrary g (#). It should be finally
remarked that the condition @y 7% 0 cannot in general be dropped in either

theorem as is best illustrated by a consideration of the equation
29 4 & = cost

(corresponding to ¢, =0,y =0,g=1 and 4 =0 in (1.6)) which has no
periodic solutions whatever. '

2. COMMENTS ON THE PROCEDURE

The proof of either theorem will be by the Leray-Schauder fixed point
technique, just as in [1] and [2] except that here it will be convenient to take,
for our parameter-dependent equation, the equation:

(2.1) 20+ X+ pug(@) i +uy(@)2+ (0 —w) ax +ph(x, 2,8, %,8) = pp @)

in which ¢, is an arbitrarily chosen, but fixed, positive constant. We note
that, as is usual in these cases, the parameter-dependent equation (2.1) reduces
to (1.6) when the parameter p =1 and to a constant-coefficient equation
namely:

(2.2) ¥ + g, %+ agxr=0
when g = o. The equation (2.1) may also be taken in the system form:
(2.3) : X = AX 4+ pF (X,

with the 4-vectors X, F and 4X4. matrix A defined by:

x (0] o 1 o (o]
o o o I o
X=|7 , F= , A=
4 o (6] (0] O I
u ¢ —a, O O —a

where y =% 2 =4%,u =% and
b=¢@,y,5,u,)=ar—y@®—g@)—h@Ex,y,s,u,)+p@.

The eigenvalues of A can be verified to be the roots of the auxiliary equation
of (2.2) namely:

(2.4) Y +ay +a=o0

with @, > o it is clear that (2.4) has no roots whatever of the form y =8
(B real) and so the matrix (e"”A —1I), I being the identity 4 X4 matrix, is
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clearly invertible and so by adapting an argument in [4; 27—28] it is easily
deduced that X = X (¥) is an w-periodic solution of (2.3) if and only if X
satisfies the equation

(2.5) X =uTX

where
t+o

(2.6) (TX) () = f (™ — DM E(X(s), 5) ds .
14

The situation here is thus exactly as in [3; § 2]., except that the vectors
here are 4-vectors and the matrices 4 X4 matrices, and the same-arguments
indeed as in [3] can be extended.to show that the existence of an e-periodic
solution of (1.6) will follow if an a priori bound (in the standard. uniform norm)
independent of p can be established for al/ - periodic solutions X of (2.5)
with we (o, 1), that is-

@.7) IXli<D

with D independent of ue (0, 1). We shall actually here stop merely with
verifying that there exists a constant D independent of p such that, for any
w-periodic solution X = col (x,y,2, %) of (2.5),

(28) max|x@|<D , max|y(®|<D and maxlz(t)| <D
(1'<t<'r—{—o))

for some 7. ' For suppose indeed that (2.8) holds, then because of (1.7) the
last entry in the definition of the vector F is bounded for all z¢ [v, v + o];
and therefore because of the definition (2.6) the vector TX is bounded (in
the usual norm) by a constant independent of p whose magnitude depends
on D, so that since, anyway, || X | < || TX| for all solutions of (2.5) with
we (0, 1) the required a priori bound (2.7) follows if (2.8) holds.
Summing; up then, it is now clear from the foregoing that for our proof
of either theorem it will suffice to concentrate on the equation (2.1) and to
prove simply that there exists a constant D > o independent of p such that

29) |*@®|<D , |#(®|<D , |¢@®|<D ‘<f§f§f+?°>

for any o-periodic solutz'on\ofb'(z.l)‘vvith( pe (o, 1.

3. COMMENTS ON THE NOTATION

Let a5 = max |2 |

In what follows the capltals D, D1 , Dy, - denote positive constants
whose magmtudes depend only on a4, a,,a,a,, ds,H,y and g but cer-
tainly #of on . Unnumbered D’s do not always have the same value in each
place of occurence, but each of the numbered Ds:D,,D,,--- retains a fixed
indentity throughout :

14. — RENDICONTI 1977, vol. LXIII, fasc. 3-4.
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4. PROOF OF THEOREM 1

Let x = x () be any w-periodic solution of (2.1). It is convenniet to
start by establishing for x the middle inequality in (2.9).
For this we will require the result

T+ T+
(4.1) ‘47r2fx2dt§w2fa'é2dt
T
which derives exclusively from the w-periodicity of x and the usual consi-
deration of the Fourier series expansions of # and &.

The key however to our estimate of | # (®) | is the direct result of multi-
plying both sides of (2.1) by # and integrating with respect to £ Since

fm‘“d;::z:?—%xz , fxa“cdt_—_xa'é—fx“zdt

z

~

d
[eear=sm &fw@m—@@x

and x is w-periodic, the integration shows at once that
T+ T+ T+

(4.2) fﬁ? dt——ual_lfy(x)z':2dt=gaflf(/zwp)z?dt.

Now, by
T4 T
— J'f(x)xzdt>—8f 2 ds

i
> L s n2fx2d;
4

by (4.1). Thus we have from (4.2), with pe (0, 1), 2 and p being bounded,
that
T+ T+o

(I ——80)2 ~2)j.ac‘zdz‘<Df |2 | dz

k3
T+

(2.

T

by Schwarz’s inequality, so that, since § < 4 % 02,

T+ T4 i
f #dz<D (f x?dt)

T
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and therefore, by (4.1),

f+w T4

%
(4.3) fa‘ézdtSD(fa'ézdt).
Hence
T4
(4-4) f P2dr<D.

T

Now, since x (0) = x (), it is clear that & (7)) = o for some 1,€ [0, ©].:
Thus ‘ ‘

¢

E20) = x (';0) + Jx (s)ds

14 %0
= [ £(s)ds
o
and therefore
X "ro+m
max |2()| SJ | %(s)|ds
0<t<o i
T T4
\?
gm%(f x?(s)'ds) _.
by Schwarz’s inequality. Hence
(4-5) max |Z(@)| <D,,
0st<o
by (4.4)

We are in'a position to tackle the first estimate in (2.9). The main tool
here is the result:

(4.6) f{(l——y.)a‘lx+u/z(x,ﬂ&,5é,£”,t)}dt=o o<u<r)

obtained from (2.1) by integrating directly and using (1.5) as well as the
o-periodicity of x. Itis not difficult to see from (4.6) that | x (v;) | < 1 for some
7€ [0, w]. For, in the contrary case: |x () | =1 for all ¢, we would have
by (1.9) that the left handside of (4.6) is strictly non zero for o <@ < I in
manifest contradiction of (4.6) itself. Hence | ()| < 1 for some 7, € [0, ©]
and thus, since

t

2@ =x(y) + Jp;f: (9 ds,

T
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we have that Tt

@ max ()] <1+ [ [#@|d<1+D0
g

by (4.5). ‘

It remains now to establish the last inequality in (2.9). For this purpose
let us set (2.1) in the form o
(4.8) ¥+ a 8=Q
where
Q=wp—pg D& —wy (DF — (1 —p) ez —ph.
Because of (4.5), (4.7) and (1.7), and with pe (o, 1), it is clear that
lQIv_<_Dz|x| +Ds.

Thus if we multiply both sides of (4.8) by ¥ and integrate we have, x being
w-periodic, that
T+ T+ T4

f£2dz<|a;‘|(Dj|5é||ﬁ|dt+D3f |’x"|dt)

T
T4

<nu([ #e)! ([ o)l 4mi([ =)

by Schwarz’s inequality.. \Hence, by (4.3),

THo T4 }
[eaz,([ =a)

which shows at once that
T+e
(4-9) f #2ds <D,

T

for some D,. Thus since & () = o for some t we have from the identity:

.ﬁ(t):jé('r)—l—jﬁ(s)ds |

that i T+e ) .
(4.10)  max | & @) gf | (s).] ds
) T T+ -
sm%(J x?(s)ds)&,
<D8 )
by (4.9).

The estimates (4.5), (4.7) and (4.10) establish (2.9) and Theorem 1 then
follows as was pointed out in §2.-
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5. PROOF OF THEOREM 2

The procedure is exactly as in § 4 except that, in order to utilize the
hypothe51s (1.10) it is useful to note that

f Y@ dt = D@ — [ D) e,

so that (4.2), in view of the w-periodicity of x, also implies that
T+

fﬁdt—l—y.a‘lj a‘cT(x)dt:Ip.a—lf (h—p)xde.

T

By (1.10) this leads in ‘turn to ‘the result:

4o L Ttoe
(5.1) fx‘-"dt<D(J lxldt—[—f [xldz‘)
4w

([

T

by (4.1) and Schwarz’s inequality, thus bringing us to the stage (4.3) of Theo-
rem 1, from which point the rest of the proof of Theorem 2 can now follow
exactly as in §4.
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