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Equazioni differenziali ordinarie. — Az oscillatory and asymptotic
classification of the solutions of differential equations with deviating
arguments . Nota di Curistos G. PHivLos, presentata ¢ dal Socio
G. SANSONE.

RIASSUNTO. — In questa Nota, estendendo alcuni risultati ottenuti recentemente da
Staikos e da Sficas, si classificano le soluzioni di una classe di equazioni differenziali ordinarie
con argomenti deviati, rispetto al loro carattere oscillatorio e al loro comportamento per £ —» oo.

Let »;(:=0,1,---,7) be positive continuous functions on the inter-
val [#,00). For a real-valued function %z on [T ,o0),T =¢,, and any
w=0,1,--+,% we define the p-th »-derivative of 4 by the formula

D k=1 (s (- Gr (o B))' - )Y
when obviously we have
DO h=ryh and DPh=r, O V8  (G=1,2,-,n).

Moreover, if D™ % is defined on [T, 0o), then % is said to be #-times r-dif-
ferentiable. We note that in the case where »y =7, =-..=7,=1 the above
notion of »-differentiability specializes to the usual one.

Now, we consider the z-th order (» > 1) differential equation with devia-
ting arguments of the form '

(E, 9 im D@ +OF U2 [e @], x (8 @] - x[ga D) = 0,

where », =1 and § = + 1. The continuity of the real-valued functions F
on [ty,00)XRmandg; (f=1,2,--+,m)on [£, co) as well as sufficient smooth-
ness to guarantee the existence of solutions of (E , 8) on an infinite subinterval
of [4,,0) will be assumed without mention. In what follows the term
‘“ solution ”’ is always used only for such solutions x (¢) of (E, ) which are
defined for all large 2. The oscillatory character is considered in the usuai
sense, i.e; a continuous real-valued function which is defined on an interval
of the form [T, oo) is called oscillatory if it has no last zero, and otherwise
it is called wmomoscillatory.

(*) This paper is a part of the Author’s Doctoral Thesi: submitted to the School of
Physics and Mathematics of the University of Ioannina.
(**) Nella seduta del 23 giugno 1977.
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Furthermore, conditions (i) and (ii) below are assumed to hold throughout
the paper:

() Forevery j=1,2,--+,m
lim g; ({) = co.
—>o0
(i) For every t = ¢,
F(;0,0,--:,00=0
and, moreover, ¥ (t;y) is nondecreasing with respect to y in Rm™,
Note. The order in R™ is considered in the usual sense, i.e.
ySzes(Wj=1,2,-my Sz.

In this paper we shall classify all solutions of the differential equation
(E , 9) with respect to their oscillatory character and to their behaviour at co.
For this purpose, S (3) will denote the set of all solutions of the equation
(E,d) and S™(3),S°®), S @) ,S5%(3),S5:*(3),S5:7(3),St*(®),S7>®)
subsets of S (§) defined as follows:

(@) S~ (d) is the set of all oscillatory xe S (3).
() S°(d) is the set of all nonoscillatory xe S (3) with

lim D %) (/) = o  monotonically (7 =o0,1, -, %—1).
t—>00 '
(¢©) S{®(d)is the set of all xeS(3) for which there exists an integer
2,0k <n—1, with 4+ £ odd and such that: ‘

(P lim PP x) () =oc0 for every i=0,1,--,4
t— 00
(P If <mn—2, then lm®DF™Vx)(H)  exists in R.
t—o0

‘(Ps) If tsn—3, then for every i=4h -t 2, -, m—1
lim (O %) ® = o,

> 00

92 (4 #o for all large ¢,
D %) () O 2@ <o for all large 2

(@) SF™(d) is the set of all x€S(3) which possess properties (Py)-(Py)
for some integer 2,0 <4 <n—1,with z + £ even.
(¢) Sy™ (9)is the set of allxe S (3) for which the function — x posses-
ses properties (P))-(P;) for some integer £,0=< £ <7 —1, with -+ £ odd.
(f) S;®(d) is the set of all xe S(3) for which the function — x posses-
ses properties (P))~(P;) for some integer 2,0 <& =% — 1, with » + £ even.
(@) S*=(@) =S () USi™ @)
(h) S=(5)=S{=(USi™ ().
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We introduce, now, the main conditions which will be used in the clas-
sification of the solutions of the equation (E, 8).
(Co) For every i=1,2,-++,n—1

= o]

dr
10]
(Cy) For every monzero constant ¢ there exists an integer \,0 = A =
< n-—1, such that

| c c .
“ e d = o0, —_— Y —
f’ ol£ (’)] 7olga D] 7 7 7olgm O] ) ‘ ’ 7o I
¢ I 3 I d . ¢ ¢
f ErIC / ot (5t / ' ( RO TACIE
4

b Vldsds,, - ds =00, i A<m—1.
”o[gm@)])‘ m e

(Cy) For every nonzero constant c
g1t} o ga(l)

/-‘ . ds c ds
. & 7’0[8'1 (t)] 7 () T 7ol (D] ; 71 (8) ’

gm(t)

D) [gm @] / 71(5) )

The oscillatory and asymptotic behavior of the solutions x of the diffe-
rential equation (E, d) with x (#) = O (1/7,(?)) as # — oo is well described
by the following theorem due to the Author [1].

df = co.

THEOREM o. Consider the differential equation (E , ) subject to the con-
ditions (i), (ii), (C,) and (C,). Then every solution x of the equation (E , - 1)
[respectively, (E , —1)] with x () = O (1/7,(?)) as ¢t — oo for n even [resp.
odd] is oscillatory, while for n odd [resp. even) is either oscillatory or such that

lim DPx) () = o monotonically (i=o0,1, -+, n—1).
{—>00 .

In order to obtain our first result (Theorem 1) we need the following

elementary lemma which has been proved by the Author in [1].

LEMMA. Let h be an n-times r-differentiable function on [T ,o00),T=¢,,
such that D" b is of constant sign on [T , 00). Moreover, let p,0 < yu < n — 2,
be an integer so that

o0

[
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If lim D¥ %) (¢) is finite, then
oo
lim D#*Y A @) =o0.

t—>00 .

THEOREM 1. Consider the differential equation (E, 8) subject to the condi-
tions (i), (ii), (C,) and (C,). Then for n even [resp. odd] the solutions of the
equation (E, + 1) [resp. (E,—1)] admit the decomposition

S(+ 1)=8"(+1DUS*(+1NUS™(+1)
[resp. S(—1) =S (—1)USH(—1)UST®(—1)US ™ (—1)],
while for n odd [resp. even), the decomposition
S(+ 1) =S~(+DUS(+ 1)UST® (+ 1) US™ (+ 1)
[resp. S(—1) =S~ (— DUSY°(—1)US ™™ (— 1)].

Proof. Let x be a nonoscillatory solution on an interval [T, , co), To= #,,

of the equation (E , &) with lim sup | (D" x) (¢) | = co. Without loss of gene-
{—>co
rality, we suppose that x (¥) %0 for all #=T,. Next, by (i), we choose a
T =T, so that
g =T, for every ¢ =T G=1,2,--,m).

Then, in view of (ii), equation (E, 8) yields

=¥ AOINO=xOF 2 [e@®] 2 (6], 2 gD 2

=x@®F(¢;0,0,---,00=0

for every ¢ = T. Thus D x is of constant sign on [T , c0) and so the functions
DPx@=1,2,--,m—1) are also eventually of constant sign.
Now, we consider the following two possible cases:

|
Case 1. lim D® %) (f) = 0.
t—>o0
Let % be the greatest integer witho < 2 < # —1 and
lim D x) () = oo for every i=o0,1,---, 4.
t—> 00 :

Obviously, if 2 £ # — 2, then
lim (D" %) (1)  exists inR.
=0 .
So, if £ = #n — 3, then, by Lemma, for every i =4 +2,---,z—1

lim DP %) () =0
t=->00

and consequently it is easy to see that

OO 2) () OV (H <o for all large 7.
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Finally, to derive that for i =4 +2,---, 2 —1.

OPx) () #£0  for all large ¢
it is enough to verify that (D! x) (#) is not identically zero for all large 2.
To do this, we suppose that there exists a Ty = T such that

DY x) () = o for every ¢ =T,

and we consider a positive constant ¢ so that for every # = T,

c
70 @)

Then, in view of (ii), from equation (E , 3) we obtain

o=—3DPD)O=F;x[a®l,x[&®], - 2 [ga O

OO =ze, ie xz@=

=F (“ 7o len D] 7olea @]’ 7olgm <t>])
=F({¢#;0,0,--1,00=0

for all # =T,. Therefore,

Flt; ¢ ‘. ¢ — - ev ]
(t’ro[m)]’ro[gz(z)]’. ’ro[gmcm) o forevery =T

which contradicts (C,).
Thus, » possesses properties (P))-(Pj), i.e. xe ST ().

Case 2. lim P %) () = — 0.

t—>o0

Let %2 be the greatest integer with 0o £ 4 <# —1 and

llm(Dﬁ')x)(t)=__oo for every I=0,1, k.

{->0c0

An argument similar to that used in Case 1 proves that the function — x pos-
sesses properties (P,)-(P3), which means that xe S™% (3).
We have proved that, if S (8) is the set of all solutions x of the equation
(E, 8 with  limsup |(DP %) (2) | = oo,
t—>-00

SE =S"B)UST*BUS ™).
This provés the theorem, since, by Theorem o,
S(+1)=S8"(+1) and S(—1)=S"(—1)US*(—1), if z is even,
S(H1D=5"(+1)US’(+1) and S(—1) =S~ (—1), if # is odd,

where S (3) is the set of all solutions x of the equation (E,8) with
x (@) =0 (a/r,(®) as ¢ — co.
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THEOREM 2. Consider the differential equation (E , -+ 1) subject to the
conditions (1), (ii), (Cy), (Cy) and (Cy). Then for n even the solutions of the equa-
tion (E., + 1) admit the decomposition

S(+ 1) =S~ (4+ DUSF®(+ 1HUST® (4 1),
while for n odd, the decomposition
S(+1)=S"(+1US°(+1).

Proof. Let xe ST (4 1) and % be the associated integer. The function
x is a solution on an interval [T,, o0),T, > #,, of the equation (E,+ 1).
By property (Py), x is eventually positive. Without loss of generality, we
assume that x (¢) > o for every ¢ = T,.

Now, we suppose that 2 = 1. Then, by property (P,), we have

lim OO x) () = lim DY %) (#) = oo

t—>o00

and consequently, using the Hospital rule, we can derive that

©0)
t—>o00 ds
7, ()
to

So, there exists a positive constant ¢ such that for every # > T,

© 4 ¢ i
®: )(’)2/ "o ex()—”o@[ﬁ@)

Thus, if, by (i), T =T, is chosen so that
g;(t) =T, for every 2 =T (j=1,2,+,m),

then, in view of (ii), from equation (E, -4 1) we obtain

— @) (B + (DI V%) (T) =

:fF(s;x [g1 (-")] ;.x [gz (.S‘)] : WX [gm (5>]) ds

t e P
ngF(S; Vo[g1(5>] [rl(u) 7o[gz(s)] /71(1‘)
gm(s)

" 7o [gm ] f 71 (%)
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for all # = T. This, because of condition (Cj), gives

lim D%V x) () = — oo,
=00
a contradiction.

Hence, £ must be zero, which obviously means that
xe SF® (+ 1), if » is even,
xe ST® (+ 1), if # is odd.

Next, we consider the case where # is odd. By (ii), equation (E, 4+ 1)
yields ‘

OPDO=—F@¢;x[e®],x[e®], - *[gn®D) =
=—F(;0,0,---,00=0

for every # =T, where T, T = T,, is chosen as above. From this and the
property (Pg) it follows that ‘

OPx) () >0 for every ¢ =T,,

where T;, T, =T, can be chosen so that (D x) (Ty) > o. Therefore, for
every t =T,

© , — (DO 4 t ! M Y (5 ds W ds
0 ) = )<T1)+T/n® O ) () ds = O MTI)T[“(‘)

and so it is easy to see that there exists a positive constant K such that

¢

ds
© >
r X)) = K/ "o for all #=T,.

to
Thus, the contradiction lim (DY x) (#) = — oo can again be derived in the
t—>oc0

considered case of odd #.
We have proved that

ST®(+ 1) =SF°(+ 1), if # is even,
St (+1) =g, if # is odd.
A similar argument gives
ST (1) =SI¥(41), if s even,
S5 (+1)=w9, if #» is odd
and hence Theorem 1 completes the proof of our theorem.

THEOREM 3. Consider the differential equation (E ,— 1) subject to the
conditions (i), (ii), (C,), (C;) and (C,). Then for n even the solutions of the equa-
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tion (B, — 1) admit the decomposition
S(—1) =S5~ (—1US (—DUSF® (— D) UST™ (—1),
while for n odd, the decomposition

S(—1) =S~ (—1)US™® (— 1)USF™ (—1).

Proof. We suppose that SF* (— 1) @ and we consider a solution
2€S3%°(— 1) as well as the associated integer £ The function x is a solution
on an interval [T,, 00),To> ¢, of (E, —1). Because of (P,), we have
x (#) > o for all large . Without loss of generality, we assume that x is positive
on the whole interval [T, o).

Suppose that Z = 1. Then, as in the proof of Theorem 2, we conclude that
there exists a positive constant ¢ such that

¢

: " ds
OBz | — i =2T,.
Oyx) () = c] O] or every =T,

to

So, by (ii), from equation (E, — 1) we obtain

O ) @) — OF V) (T) =

= /F(S;x[gl(s)] 2 [£2(D) 55 % [gm (DD ds
T

gl(s) gz(s)

g’i/ F( A TE G / R TG f SR

¢ gm(zl)u )
" 7ol 8m (9)] P 7y (u)

for all £ =T, where T, T =T,, is chosen, by (i), so that

g =T, for every ¢t=2T (G=1,2,,m).
This, because of condition (Cg), gives
lim (D& V%) () = .
o0

But £ < n — 2, since # -+ £ is even, and consequéntly the last relation is a
contradiction.

Thus, Z must be zero and therefore # is even. Furthermore, in view of
(ii), from equation (E , — 1) we have

OPDO=F¢:x[ea®], 7@, rlga.OD =
=2F(@¢;0,0,-+-00=0,:=T.
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Namely, D™ x is nonnegative on [T, 00). By this and (P,), there exists a
T, = T such that (DY x) (T)) > o and

DPx) (D) zo for every ¢ =T,.

Hence, as in the proof of Theorem 2, we conclude the existence of a constant

K > o so that
t

OY% =K f ds

for all z=T
71 (5) 0

ans so the contradiction lim (D% x) (f) = oo can again be derived.
{—o0

We have therefore proved that S§* (— 1) = @. By a similar argument,
we obtain S;° (— 1) = ». Finally, Theorem 1 completes the proof of our
theorem.

Remark. In the usual case where 7y =7, =---=7,_, = I, the condition
(C,) holds by itself while the condition (C;) becomes (cf. [1]):

(CY) For every nonsero constant c,

fl‘”"l|F(l‘;c,£,--~,c)]dt=oo.
Moreover, the condition (C;) takes the form:

0
(Cy) For every monzero constant c,

[IFCa®.m®, - amo) =
So, by applying our results for the differential equation

2™ (@) FF 2 [£61D], (&), 2 [gm DD =0,

we obtain recent ones due to Staikos and Sficas [2].
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