ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Teofilo Abuabara

On the Paley-Wiener-Schwartz theorem in infinite dimensions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **63** (1977), n.3-4, p. 192–194.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_3-4_192_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi funzionale. — On the Paley-Wiener-Schwartz theorem in infinite dimensions. Nota (*) di Teòfilo Abuabara, presentata dal Corrisp. G. CIMMINO.

RIASSUNTO. — Si risolve una questione posta da L. Nachbin, dando condizioni caratterizzanti le trasformate di Fourier delle distribuzioni a supporto limitato su certi spazi di Banach a infinite dimensioni.

This Note concerns a generalization of the Paley-Wiener-Schwartz theorem for distributions on an infinite dimensional Banach space. Nachbin and Dineen [1] defined the Fréchet space $\varepsilon_{Nbo}(E; F)$ of all infinitely nuclearly differentiable mappings of bounded-compact type from E to F, with E a real Banach space and F any Banach space. This is the closure in $\varepsilon_{Nb}(E; F)$ of the subspace generated by the mappings of the form $\Phi^m \cdot b : E \to F$, $\Phi \in E'$, $b \in F$, $m \in N$. We recall that $\varepsilon_{Nb}(E; F)$ is the Fréchet space of all infinitely differentiable mappings $f: E \to F$ such that $\hat{d}^m f(E) \subset \mathscr{P}_N (^m E; F)$ for $m = 0, 1, 2, \dots$, each mapping $\hat{d}^m f: E \to \mathscr{P}_N(^m E; F)$ being differentiable of first order and bounded on bounded subsets. Here \mathscr{P}_{N} (**E; F) denotes the Banach space of nuclear m-homogeneous polynomials from E to F, endowed with the nuclear norm. For further details we rever to Nachbin [2]. The topology of $\varepsilon_{Nb}\left(E\;;\;F\right)$ is the one generated by the following countable system of semi-norms $f \in \varepsilon_{Nb}(E; F) \xrightarrow{q_{m,n}} q_{m,n}(f) = \sup \{ \| \hat{d}^k f(x) \|_N ; k \le n \}$ $||x|| \le m$, for m, n = 0, 1, 2, \cdots . In the case that E is finite dimensional and F = C, $\varepsilon_{Nbc}(E; C) = \varepsilon_{Nbc}(E)$ is simply the space $\varepsilon(E)$ endowed with the Schwartz topology [4]. For this reason and on account of Theorem 1 below, $\varepsilon'_{Nbc}(E)$, the dual space to $\varepsilon_{Nbc}(E)$, is called the space of distributions with bounded support in infinite dimensions. Nachbin and Dineen proved that the Paley-Wiener-Schwartz conditions are not sufficient if E is infinite dimensional, by constructing a holomorphic function of exponential type on $(E')_{\mathbf{C}}$ (the normed complexification of E') bounded on E' (and hence slowly increasing) which is not the Fourier transform of any element of ε'_{Nbc} (E). The main result of the present article is a necessary and sufficient condition for a slowly increasing complex valued holomorphic function of exponential type on $(E')_{\mathbf{C}}$ (where E belongs to a wide class of separable Banach spaces) to be the Fourier transform of a distribution with bounded support in infinite dimensions: the

^(*) Pervenuta all'Accademia il 10 ottobre 1977.

⁽¹⁾ This is an announcement of the main results in the Author's doctoral thesis at IMPA, Rio de Janeiro (1977), written under the guidance of Prof. Jaime Lesmes.

Paley-Wiener-Schwartz theorem in infinite dimensions. Following Restrepo [3], we say that a Banach space E has Property (B) if there exists a sequence $P_n: E \to E$ of continuous linear projections such that each $P_n(E)$ is finite dimensional, $P_n(x) \to x$ for every $x \in E$ and $P_n^*(\phi) \to \phi$ for every $\phi \in E'$ where P_n^* denotes the adjoint operator of P_n . Every Banach space with a biorthogonal basis has Property (B). In particular, every Hilbert space has Property (B). We say that $\xi \in \varepsilon'_{Nbc}(E)$ has support contained in the closed ball in E of center O and radius m, if there exists constant c > 0 and $e \in \mathbb{N}$ such that

$$|\xi(g)| \leq cq_{m,\nu}(g)$$

for every $g \in \varepsilon_{Nbc}$ (E).

Theorem 1. Let E be a real separable Banach space with Property (B) and denote by Y the vector subspace of $\varepsilon_{Nbc}(E)$ generated by the mappings of the form $e^{i\phi}: E \to \mathbb{C}$, where $\phi \in E'$.

a) If $\xi \in \varepsilon'_{Nbc}(E)$ has support contained in the closed ball of center O and radius m and, if $f:(E')_{\mathbf{C}} \to \mathbf{C}$ is defined by $f(\zeta) = \xi(e^{i\zeta})$ then: I) f is a holomorphic function on $(E')_{\mathbf{C}}$ and there exists constants c > 0 and $v \in N$ such that

$$|f(\zeta) \le c (\mathbf{I} + ||\zeta||)^{\mathsf{v}} \exp(m ||\operatorname{Im} \zeta||)$$

for every $\zeta \in (E')_{\mathbb{C}}$, where $\operatorname{Im} \zeta$ denotes the imaginary part of ζ . 2) The sequence $(\xi_n)_n \subset Y'$, where ξ_n is defined by

$$g = \sum_{j=1}^{l} \alpha_j e^{i\varphi j} \in Y \mapsto \xi_n(g) = \sum_{j=1}^{l} \alpha_j f(\varphi_j \circ P_n),$$

is equicontinuous.

b) Conversely, if $f:(E')_{\mathbf{C}} \to \mathbf{C}$ is a function satisfying 1) and 2), then there exists $\xi \in \varepsilon'_{Nbc}(E)$ with support contained in the closed ball in E of center O and radius αm such that $\xi(e^{i\varphi}) = \hat{\xi}(\varphi) = f(\varphi)$ for every $\varphi \in E'$, where α is a constant such that $\sup_{\alpha} ||P_{\alpha}|| \leq \alpha$.

In the following, we sketch the proof of the theorem. In the direct part, f is a holomorphic function of exponential type on $(E')_{\mathbf{C}}$ and slowly increasing on E'. We have that $\xi_n(g) = \xi\left(g \circ P_n\right)$ and $q_{m,k}(g \circ P_n) \leq \alpha^k q_{m,k}(g)$, for every m, $k \in \mathbf{N}$ and for every $g \in Y$. Hence the equicontinuity of the sequence $(\xi_n)_n$ follows from the continuity of ξ . To prove the converse of the theorem, one passes to the finite dimensional case to apply the Paley-Wiener-Schwartz theorem, and then uses the Alaoglu-Bourbaki theorem to show existence of ξ . The assertion on the support follows from the Paley-Wiener-Schwartz theorem and the Mackey theorem.

REFERENCES

- [1] L. NACHBIN and S. DINEEN (1972) Entire functions of exponential type bounded on the real axis and Fourier transform of distributions with bounded support, «Israel J. Math.», 13, 321-326.
- [2] L. NACHBIN (1969) Topology on spaces of holomorphic mappings, Springer-Verlag, « Ergebnisse der Mathematik », 47.
- [3] G. RESTREPO (1969) An infinite dimensional version of a theorem of Bernstein, « Proc. Amer. Math. Soc. », 23, 193–198.
- [4] L. SCHWARTZ (1966) Théorie des distributions. Hermann Paris.