Gabriella Di Blasio, Lamberto Lamberti

Age-dependent population dynamics

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_3-4_175_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.
Analisi matematica. — Age-dependent population dynamics.
Nota (*) di Gabriella Di Blasio (**) e Lamberto Lambert (***),
presentata dal Corrisp. G. Stampacchia.

RIASSUNTO. — Si studia il problema di Cauchy per una equazione differenziale deri-
vante dallo studio della diffusione di una singola specie biologica. Si dimostra l’esistenza e
l’unicità della soluzione di tale problema e la dipendenza continua dai dati.

1. INTRODUCTION

This paper is concerned with the study of the following partial differential
equation
\[\frac{\partial}{\partial t} u(t, a, x) + \frac{\partial}{\partial a} u(t, a, x) = -\mu(a) u + \int_{0}^{+\infty} k(a, a') \Delta u \, da' \]
\[t, a \geq 0, \quad x \in \Omega \]
which has been proposed by Gurtin as a model for diffusion of a single species
population [4].

Here \(u(t, a, x) \) represents the density per unit volume and age of some
biological population at time \(t \) at the location \(x \) in \(\Omega \) and \(\mu \) is the age-dependent
mortality rate so that \(-\mu u \) represents the death process.

We shall study equation (1) together with the following additional con-
ditions

(i) an initial space and age distribution \(u(0, a, x) = u_0(a, x) \);
(ii) an age boundary condition representing the birth process
\(u(t, 0, x) = b(t, x) \);
(iii) a spatial boundary condition \(\frac{\partial}{\partial n} u = 0 \) where \(\frac{\partial}{\partial n} \) is the exterior
normal derivative at the boundary \(\partial \Omega \).

2. PRELIMINARIES

In this section we collect some known results concerning dissipative
functions (see [2] and [3]).

Let \(H \) be a real Hilbert space; a function \(A : D(A) \subseteq H \rightarrow H \) is said to
be dissipative if for each \(u, v \in D(A) \) we have \(\langle Au - Av, u - v \rangle \leq 0 \). A
dissipative \(A \) is said to be hyper-dissipative if \(\langle \lambda I - A \rangle (D(A)) = H \) for each
\(\lambda > 0 \).

(*) Pervenuta all’Accademia il 17 settembre 1977.
(**) Istituto Matematico « G. Castelnuovo » dell’Università (Roma).

If \(A \) is hyper-dissipative we can consider the Yosida approximating functions \(A_n : H \to H, \quad (n \in \mathbb{N}) \)-defined by

\[
A_n = n (nI - A)^{-1} n - nI = A (nI - A)^{-1} n.
\]

The following Lemma collects some known properties of the functions \(A_n \).

Lemma 1. If \(A \) is hyper-dissipative then:

(i) \(A_n \) is a Lipschitz continuous function;

(ii) \(A_n \) is hyper-dissipative;

(iii) if \(u_n \) is such that \(u_n \to u \) and \(A_n u_n \rightharpoonup v \) (weak convergence) then \(u \in D(A) \) and \(Au = v \).

3. **Properties of the functions** \(\frac{\partial}{\partial a} + \mu I \) and \(\int k \Delta \)

Let \(\mu : [0, +\infty) \to \mathbb{R}, \ a \to \mu (a) \geq 0 \) and \(K : [0, +\infty] \times [0, +\infty] \to \mathbb{R}, (a', a) \to K (a, a') \) be measurable functions; we shall study equation (i) under the following hypotheses

\((m_1) \quad \mu \in L^1_{\text{loc}} ([0, +\infty]) \)

\((k_1) \) there exists a constant \(c_1 \) such that for each \(u \in L^2 ([0, +\infty]) \) we have

\[
\int_0^{+\infty} \left(\int_0^{+\infty} K (a, a') u (a') \, da' \right)^2 \, da \leq c_1 \left(\int_0^{+\infty} u^2 \, da \right)^{\frac{1}{2}}
\]

\((k_2) \) for each \(u \in L^2 ([0, +\infty]) \) we have

\[
\int_0^{+\infty} \int_0^{+\infty} K (a, a') u (a) u (a') \, da' \, da \geq 0.
\]

Now let \(\Omega \subseteq \mathbb{R}^n \) be an open bounded set with smooth boundary \(\partial \Omega \) and set \(H = L^2 ([0, +\infty]) \); we denote by \(A_\beta \), \(T \) and \(B \) the operators defined by

\[
D(A_\beta) = \begin{cases} u \in H, \ a \to u (a, x) \in W^{1,2} ([0, +\infty]) & \text{and} \quad u (0, x) = \beta \\ \text{for a.e. } x \in \Omega; \quad (a, x) \to \frac{\partial}{\partial a} u (a, x) \in H \end{cases}
\]

\[
A_\beta u = - \frac{\partial}{\partial a} u
\]

where \(\beta \in L^2 (\Omega) \) is a given function and

\[
\begin{align*}
D(T) &= H \\
Tu &= \int_0^{+\infty} K (a, a') u (a', x) \, da'
\end{align*}
\]
The following theorems are well known

Theorem 2. $A_\beta - \mu I$ is hyper-dissipative and we have $(A_\beta u - \mu u, u) \leq \frac{1}{2} \int \beta^2 \, dx$.

Theorem 3. B is hyper-dissipative.

The following Lemmas collect some further properties of A_β, T and B.

Lemma 2. The operator TB is dissipative.

Proof. Let $u \in D(B)$ from (k_2) we have

$$(TBu, u) = -\int_0^{+\infty} \int_0^{+\infty} \int K(a', x) \sum_{i=1}^m u_{x_i}(a', x) u_{x_i}(a, x) \, da' \, da \, dx \leq 0.$$
4. Existence and uniqueness results

For each \(s \geq 0 \) and \(n \in \mathbb{N} \) we shall consider the following regularized problem

\[
\begin{align*}
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} &= -\mu u + \int_{0}^{+\infty} K(a, a') \Delta_n u \, da' + \varepsilon \Delta_n u + w \\
u(t, o, x) &= b(t, x) \\
u(o, a, x) &= \nu_0(a, x)
\end{align*}
\]

where \(\Delta_n u = B_n u(t) \) with \(B_n \) defined as in section 3.

To study problem (2) it is convenient to introduce the following definition.

We say that a function \(u \in C(o, T; H) \) is a strong solution of (2) if there exists \(\{u_k\} \) such that

\[(s_1) \quad u_k \in W^{1,2}(o, T; H) ; \quad \mu u_k \in L^2(o, T; H) ; \quad a \to u_k(t, a, x) \in \mathbb{R} \quad \text{for a.e.} \ (t, a) \in [o, T] \times \Omega \quad \text{and} \quad t \to \frac{\partial}{\partial a} \frac{\partial u_k}{\partial a} \in L^2(o, T; H)\]

\[(s_2) \quad \text{we have } u_k \to u \text{ in } C(o, T; H)\]

\[
\begin{align*}
\frac{\partial u_k}{\partial t} + \frac{\partial u_k}{\partial a} + \mu u_k &\to \int_{0}^{+\infty} K \Delta_n u \, da' + \varepsilon \Delta_n u + w \quad \text{in } L^2(o, T; H) \\
u_k(t, o, x) &\to b(t, x) \quad \text{in } C(o, T; L^2(\Omega)) \\
u_k(o, a, x) &\to \nu_0(a, x) \quad \text{in } H.
\end{align*}
\]

It is not difficult to prove the following result

Lemma 6. Let \(K = o, \varepsilon = o, w = o \) and \(\nu_0 = o \) then there exists a unique strong solution \(u_1 \) of (2) and we have

\[
u_1(t, a, x) = \begin{cases} b(t - a, x) \exp \left(\int_{0}^{a} \mu(\sigma) \, d\sigma \right) & t > a \\ 0 & t \leq a. \end{cases}
\]

(1) If \(E \) is a Hilbert space we denote by \(C(o, T; E) \) the Banach space of all continuous functions \(u : [o, T] \to E \); by \(L^2(o, T; E) \) the Hilbert space of square integrable functions \(u : [o, T] \to E \) and by \(W^{1,2}(o, T; E) \) the space of all absolutely continuous functions \(u : [o, T] \to E \) such that \((d/dt) u \in L^2(o, T; E) \).
Lemma 7. Let $b = 0$ and $w = \int_0^{+\infty} K(a, a') \Delta_n u_1 \, da' + \varepsilon \Delta_n u_1$ then there exists a unique $\bar{u}_{e,n}$ strong solution of (2).

By Theorem 2 and Lemma 4 we have that $A_0 - \mu I$ is hyper-dissipative and that $TB_n + \varepsilon B_n$ is continuous and dissipative so that (see [1, Theorem 1]) $A_0 - \mu I + TB_n + \varepsilon B_n$ is hyper-dissipative and the result follows (see [2] and [3]).

Summarizing we have

Theorem 4. Let u_1 and $\bar{u}_{e,n}$ be the functions defined as in Lemmas 6, 7; then the function $u_{e,n} = u_1 + \bar{u}_{e,n}$ is a strong solution of (2) with $w = 0$.

The following Lemma collects some a-priori estimates for the solutions of (2).

Lemma 8. Let $u_0 \in D(B)$ and let $z_{e,n}$ be the strong solution of (2) given by Theorem 4. Then for each $t \in [0, T]$ we have:

(i) $\| u_{e,n}(t) \|_H \leq \| u_0 \|_H + \| b \|_{C(0,T;L^2(\Omega))}$

(ii) $\varepsilon \int_0^t \| \Delta_n u_{e,n} \|^2 \, ds \leq \tilde{C}(T, u_0, b)$

where $\tilde{C}(T, u_0, b)$ is a constant depending on T, u_0 and b.

Moreover if $u_0, \bar{u}_0 \in D(B), b, \bar{b} \in C(0, T; L^2(\Omega))$ and if $u, \bar{u}_{e,n}$ are the corresponding strong solutions then

(iii) $\| u_{e,n}(t) - \bar{u}_{e,n}(t) \|_H \leq \| u_0 - \bar{u}_0 \|_H + \| b - \bar{b} \|_{C(0,T;L^2(\Omega))}$.

Proof. To prove (i) it suffices to take the scalar product of (e_2) with u_k, integrate over $[0,t]$ and use Theorem 2. Assertion (ii) follows from Lemma 5 by taking the scalar product of (e_2) with $\Delta_n u_k$. Finally the proof of (iii) is similar to that of (i).

Finally using Lemma 8 (ii) and Lemma 1 (iii) we get the following existence result for the solutions of (2) in the generalized sense specified below

Theorem 5. Let $u_0 \in D(B)$ and $b \in C(0, T; L^2(\Omega))$ then there exists u and $\{u_e\}$ verifying the following properties

$$(g_1) \quad x \rightarrow u_e(t, a, x) \in W^{2,2}(\Omega) \quad \text{for a.e.} \quad (t, a) \in [0, T] \times [0, +\infty[\quad \text{and} \quad \frac{3}{2} \varepsilon u = 0 \quad \text{a.e.} \quad x \in \partial \Omega$$
(g_f) \(u_n \) is the strong solution of the problem

\[
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} + \mu u = \int_0^{+\infty} K(a, a') \Delta u_n \, da' + \varphi_n
\]

\[
u(t, 0, x) = b(t, x)
\]

\[
u(0, a, x) = u_0(a, x)
\]

\(\gamma \) we have \(u_n \to u \) in \(C(0, T; H) \) and \(\varphi_n \to 0 \) in \(L^2(0, T; H) \).

Moreover if \(u_0, \tilde{u}_0 \in D(B) \), \(b, \tilde{b} \in C(0, T; L^2(\Omega)) \) and \(u, \tilde{u} \) are the corresponding generalized solutions then

\[
\| u(t) - \tilde{u}(t) \|_H \leq \| u_0 - \tilde{u}_0 \|_H + \| b - \tilde{b} \|_{C(0,T;L^2(\Omega))}.
\]

REFERENCES