ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

JAVED AHSAN

Completely hereditary rings

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **63** (1977), n.3-4, p. 159–163.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_3-4_159_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1977.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Ferie 1977 (Settembre-Ottobre)

(Ogni Nota porta a piè di pagina la data di arrivo o di presentazione)

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Algebra. — Completely hereditary rings. Nota di JAVED AHSAN, presentata (*) dal Corrisp. A. ANDREOTTI.

RIASSUNTO. — Si fornisce una caratterizzazione di anelli artiniani completamente ereditarii e semi completamente ereditarii.

I. INTRODUCTION

We recall that a ring R is right hereditary in case each of its right ideals is projective. It is well known that R is right hereditary if and only if every submodule of a projective right R-module is projective. Dually, R is right hereditary if and only if each factor module of an injective right R-module is injective. It is, however, not necessary for a hereditary ring to have the property that each homomorphic image of a quasi-injective R-module is quasi-injective. Fuller [6] called a ring R " completely hereditary" if each submodule of a quasi-projective R-module is quasi-projective. Dual to completely hereditary rings are rings for which each homomorphic image of a quasi-injective module is quasi-injective. Though in the most general case it is not known whether the two classes of rings so defined coincide or not, Fuller [6] did prove that the two classes coincide in the Artinian case.

The purpose of this paper is to study some properties of rings for which each homomorphic image of a quasi-injective module is quasi-injective. Following the terminology of Fuller, we shall call such rings " completely here-

11. - RENDICONTI 1977, vol. LXIII, fasc. 3-4.

^(*) Nella seduta del 12 febbraio 1977.

ditary". We shall also briefly study rings for which each homomorphic image of a finitely generated quasi-injective module is again quasi-injective. Such rings will be called "semi-completely hereditary" or, in short, SCHrings.

2. PRELIMINARIES

Throughout this paper all rings are associative rings with identity and all modules are unitary right modules. An R-module M is quasi-injective if every homomorphism from a submodule of M into M extends to an endomorphism of M. Quasi-projective modules can be defined dually. For an ideal I of R, the quasi-injectivity of M as an R/I-module implies the quasi-injectivity of M as an R-module. Also, if M_R is a quasi-injective module and I annihilates M, then $M_{R/I}$ is quasi-injective (see Lemma 2 of [1]). If M is quasi-injective, then so is $M^n (=M \oplus \cdots \oplus M; n \text{ times})$ (Proposition 2.4, Harada [7]). Every faithful quasi-injective module over an Artinian ring is injective (Theorem 1.2, Fuller [5]). A ring R is called a V-ring if each simple R-module is injective.

3. MAIN RESULTS

An interesting characterization of hereditary rings due to Matlis [9] states that a ring R is right hereditary if and only if the sum of every pair of injective submodules in a right R-module is injective. One may wonder whether a corresponding characterization of completely hereditary rings can be found in the quasi-injective setting. We do not know the answer in general but we shall prove that such a characterization does exist in the Artianian case. First we add a remark which we borrow from Faith [2, p. 63].

Let R be a ring and E an R-module. Suppose N is a submodule of E and $Q = E \oplus E$ be the direct product (or direct sum) of two copies of E. Let $K = \{(x, x) \in Q \mid x \in N\}$ and Q = Q/K.

Define $M_1 = \{y + K \in \mathbf{Q} \mid y \in (E, o)\}$ and $M_2 = \{y + K \in \mathbf{Q} \mid y \in (o, E)\}$. Then $\mathbf{Q} = M_1 + M_2$; $M_i \cong E$ (i = I, 2) and $M_1 \cap M_2 \cong N$.

We now prove the following lemma.

LEMMA 1. Let R be an Artinian ring. If each sum $M_1 + M_2$ of quasiinjective submodules of an R-module is quasi-injective, then R is completely hereditary.

Proof. Let E_R be a quasi-injective module and N_R be a submodule of E_R . In order to prove the lemma, we show that $(E/N)_R$ is (R-) quasi-injective. We do this as follows:

Let $I = ann_R(E)$ and write $\mathbf{R} = R/I$.

The E_R is a faithful quasi-injective module. Since R is an Artinian ring, E_R is injective.

Let us now consider E_R and N_R a submodule of E_R . Write $Q_R = E_R \oplus E_R$ to be the direct product or direct sum of two copies of E_R and let $K_R = \{(x, x) \in Q_R \mid x \in N_R\}$ and $Q_R = Q/K$.

Define $M_{\mathbf{R}}^1 = \{ y + K \in \mathbf{Q}_{\mathbf{R}} \mid y \in (E, o) \}$ and $M_{\mathbf{R}}^2 = \{ y + K \in \mathbf{Q}_{\mathbf{R}} \mid y \in (o, E) \}$. Then, in view of the remark above,

$$\begin{split} \mathbf{Q}_{\mathbf{R}} &= \mathbf{M}_{\mathbf{R}}^{1} + \mathbf{M}_{\mathbf{R}}^{2}, \\ \mathbf{M}_{\mathbf{R}}^{i} &\cong \mathbf{E}_{\mathbf{R}} \qquad (i = 1, 2), \quad \text{and} \\ \mathbf{M}_{\mathbf{R}}^{1} &\cap \mathbf{M}_{\mathbf{R}}^{2} &\cong \mathbf{N}_{\mathbf{R}}. \end{split}$$

Since $E_{\mathbf{R}}$ is an injective module, $M_{\mathbf{R}}^{i}$ (i = 1, 2) are injective. Also, since $M_{\mathbf{R}}^{1}$ is injective, it follows that $M_{\mathbf{R}}^{1}$ is quasi-injective. Similarly, $M_{\mathbf{R}}^{2}$ is quasi-injective. Therefore, by the assumption, $(M_{1} + M_{2})_{\mathbf{R}}$ is **R**-quasi-injective. Then $(M_{1} + M_{2})_{\mathbf{R}}$ is (\mathbf{R}) quasi-injective. Therefore, $\mathbf{Q}_{\mathbf{R}} = M_{\mathbf{R}}^{1} + M_{\mathbf{R}}^{2}$ is (\mathbf{R}) quasi-injective. Therefore, $\mathbf{Q}_{\mathbf{R}} = M_{\mathbf{R}}^{1} + M_{\mathbf{R}}^{2}$ is (\mathbf{R}) quasi-injective. But $M_{\mathbf{R}}^{1}$ is injective, hence there exists a submodule $G_{\mathbf{R}}$ of $\mathbf{Q}_{\mathbf{R}}$ such that $\mathbf{Q}_{\mathbf{R}} = M_{\mathbf{R}}^{1} \oplus G_{\mathbf{R}}$. Therefore, $G_{\mathbf{R}}$ is quasi-injective. Now $G_{\mathbf{R}} \cong (M_{1} + M_{2})/M_{1} \cong (M_{2}/M_{1} \cap M_{2})_{\mathbf{R}}$. Since $M_{\mathbf{R}}^{2} \cong E_{\mathbf{R}}$ and $(M_{1} \cap M_{2}) \cong N_{\mathbf{R}}$, it follows that $(E/N)_{\mathbf{R}} \cong G_{\mathbf{R}}$. Hnce, $(E/N)_{\mathbf{R}}$ is quasi-injective. This implies that $(E/N)_{\mathbf{R}}$ is **R**-quasi-injective. This proves the lemma.

THEOREM 2. Let R be an Artinian ring. Then the following statements are equivalent:

- (1) The sum of every pair of isomorphic quasi-injective submodules in any right R-module is quasi-injective.
- (2) R is completely hereditary.

Proof. $(I) \Rightarrow (2)$

This can be proved by repeating the arguments of the above Lemma.

 $(2) \Rightarrow (1)$.

Let M_1 and M_2 be any two isomorphic quasi-injective submodules of an R-module. Then $M_1 + M_2$ is a homomorphic image of $M_1 \oplus M_2$. Since $M_1 \oplus M_2$ is quasi-injective (Proposition 2.4, Harada [7]) and R is completely hereditary, $M_1 + M_2$ is quasi-injective.

If we assume that the sum of any two quasi-injectives is quasi-injective, then we obtain a result which may be of independent interest. First, we obtain the following lemma.

LEMMA 3. Let R be any ring. If a sum $M_1 + M_2$ of any two quasiinjectives is quasi-injective, then R is a right Noetherian right hereditary V-ring and every quasi-injective is injective.

Proof. We first prove that every quasi-injective is injective. Let M be any quasi-injective module and write $A = E(R) \oplus M$; where E(R) is the injective envelope of R_R . Then, by our assumption, A is quasi-injective. Since R Q A and A is quasi-injective, any map $f: I \rightarrow A$; I a right ideal of R;

extends to a map $f': \mathbb{R} \to \mathbb{A}$. Hence, by Bear's Criterion, A is injective and so M is injective. Since every semi-simple Artinian module is quasi-injective (Fait [2], Cor. 9 p. 55), every such module is injective and, hence, R is right Noetherian (Kurshan [8], Theorem 2.4). Also, since every simple module is quasi-injective, every simple module is injective. Hence, R is a V-ring. If M_1 and M_2 are injective submodules of an R-module, then $M_1 + M_2$ is quasi-injective by the assumption, and so $M_1 + M_2$ is injective. Therefore, R is a hereditary ring.

We now prove the ronowing theorem.

THEOREM 4. Let R be a commutative ring. Then the following statements are equivalent:

(I) Each ordinary sum of quasi-injective modules is quasi-injective.

(2) R is semi-simple Artinian.

Proof. 1. Suppose each sum of quasi-injectives is quasi-injective. Then R is a Noetherian V-ring by the above lemma. Therefore, R is a direct product of simple V-rings (Faith [3]). Since R is a commutative ring, each simple ring is a field. Therefore, R is semi-simple Artinian.

2. The converse is immediate.

We shall call a ring R "semi-completely hereditary" or, in short, an "SCH-ring" in case each homomorphic image of a finitely generated quasiinjective R-module is quasi-injective. We hall obtain characterization of SCH-rings in the commutative case. First we prove a lemma.

LEMMA 5. Let R be a commutative ring. Then every faithfull finitely generated quasi-injective module is injective.

Proof. Let M be a faithful finitely generated quasi-injective module. Then, by Proposition 2.28 on page 146 of Faith [4], M is compact faithful in the sense that $\mathbb{R} \subseteq \mathbb{M}^n$; for a finite integer n > 0. Since M is quasi-injective, so is \mathbb{M}^n . Hence, any map $f: \mathbb{I} \to \mathbb{M}^n$ (I an ideal of \mathbb{R}) extends to a map $f': \mathbb{R} \to \mathbb{M}^n$. This implies, by Baer's Criterion, that \mathbb{M}^n is injective, so M is injective.

THEOREM 6. Let R be a commutative ring. Then the following statements are equivalent:

- (I) Each sum of a pair of finitely generated isomorphic quasi-injective submodules of an R-module is quasi-injective.
- (2) R is an SCH-ring.

Proof. I. (I) \Rightarrow (2).

Let E_R be a finitely generated quasi-injective module and N_R be a submodule of E_R . In order to prove that R is an SCH-ring, we must show that $(E/N)_R$ is (R-) quasi-injective. Let I = ann(E) and write $\mathbf{R} = R/I$. Then $E_{\mathbf{R}}$ is a faithful finitely generated quasi-injective **R**-module. Hence, by the above lemma, $E_{\mathbf{R}}$ is (**R**-) injective. Now, by using the arguments employed in the proof of Lemma I, we can show that $(E/N)_{\mathbf{R}}$ is $(\mathbf{R}$ -) quasi-injective.

2. $(2) \Rightarrow (1)$.

Let M_1 and M_2 be any two finitely generated isomorphic quasi-injective submodules of an R-module, then $M_1 \oplus M_2$ is finitely generated and quasiinjective. Since $M_1 + M_2$ is a homomorphic image of $M_1 \oplus M_2$, and R is an SCH-ring, it follows that $M_1 + M_2$ is quasi-injective. This proves the theorem.

References

- [1] J. AHSAN (1973) Rings all of whose cyclic modules are quasi-injective, « Proc. London Math. Soc. », 27 (3), 425-439.
- [2] C. FAITH (1967) Lectures on Injective Modules and Quotient Rings, Springer-Verlag Lecture Notes, New York.
- [3] C. FAITH (1972) Moduels Finite Over Endomorphism Rings, Lectures on Rings and Modules (Tulane Univ. Ring Theory Conference Proceedings) « Pringer-Verlag Lecture Notes », 246, 145-189.
- [4] C. FAITH (1973) Algebra Rings, Modules and Categories, «I, Springer-Verlag Lecture Notes.», New York.
- [5] K. R. FULLER (1969) On direct representations of quasi-injectives and quasi-projectives, « Arch. Math. », 20, 495-502.
- [6] K. R. FULLER (1972) Relative projectivity and injectivity classes determined by simple modules, « J. London Math. Soc. », 5.
- [7] M. HARADA (1965) Note on quasi-injective modules, «Osaka J. Math.», 2, 351-356.
- [8] R. P. KURSHAN (1970) Rings whose cyclic modules have finitely generated socle, « J. Algebra », 15, 376-386.
- [9] E. MATLIS (1958) Injective Modules Over Noetherian Rings, «Pac. J. Math.», 8, 511– 528.