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Teorie relativistiche. — Minimal prescription for matter terms
tn the gravitational theory . Nota di GIANCARLO SPINELLI, presen-
tata v dal Socio C. CaTTANEO.

R1ASSUNTO. — E noto che una teoria gravitazionale pud essere costruita con un approc-
cio di teoria dei campi nello spazio tempo pseudoeuclideo ove il potenziale gravitazionale
viene rappresentato con un tensore doppio simmetrico $ug. Poiché tale approccio ha carattere
iterativo, si presenta il problema della convergenza. Deser ha dimostrato che i termini di
puro campo convergono ai corrispondenti della relativith generale, Nel presente lavoro si
mostra come i termini della densitd lagrangiana della teoria esatta, relativi alla materia ed
alla sua interazione con il campo, si possano ottenere con un metodo di minima prescrizione
a partire dalla densita lagrangiana di ordine zero. In tal maniera si ottengono i corrispondenti
termini della relativith generale.

1. INTRODUCTION

It is well known [1, 2] that gravitation can also be treated as a usual
field theory starting from the flat space-time. A symmetric tensor g repre-
sents the gravitational potential in the pseudo-Euclidean ‘‘ unrenormalized "’ [1]
space-time (i.e. the space measured by ideal clocks and rods unaffected by
gravity). Real rods and clocks are affected by ¢,z and one can alternatively
describe the motion measured by such real rods and clocks thinking of them
as unaltered but so obtaning a curved space-time.

The fact is that such theories can be constructed only in an iterative form.
One of the major problems is to show the convergence of the method and
obtain the exact theory to which it converges. It was shown by Ogievetsky
and Polubarinov [3] and independently by Wyss [4] that such a procedure
converges to general relativity, imposing gauge invariance to all orders and
only for the pure field terms. In a fundamental paper [5] Deser has shown
the convergence to general relativity in a more general case and also in the
presence of matter. As to the pure field terms Deser implements a linear
action integral written in the Palatini form. He observes that taking as initial
variables the contravariant components of the fundamental metric tensor,
the exact action integral is reached at the third step of the iteration. As to
the matter part (pure matter term and interaction terms between matter and
gravitation) he uses the argument of the minimal prescription.

The minimal prescription for matter terms is here treated explicitly and
the convergence to the relevant term of general relativity shown. The thing
is of interest also for a future application to the pure field terms in order to

(*) Lavoro eseguito nell’ambito dell’attivitd del G.N.F.M. del C.N.R.
(**) Nella seduta del 23 giugno 1977.
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have a general procedure to obtain the exact theory from the iteration even
in those cases where the lucky circumstance of the end of the iteration pro-
cedure at the third step only, does not take place.

2. THE ITERATION PROCEDURE

The usual flat space-time iterative procedure is here briefly reported for
reader’s convenience and for stating the problem.

We consider an ‘‘ unrenormalized "’ [1] pseudo-Euclidean space-time
(i.e. the space measured by ideal clocks and rods unaffected by gravity).
Gravity is represented by a symmetric tensor potential {,5. The theory deals
with test particles whose coordinates are z* in a generic reference frame of
such flat space-time. The Dicke framework is accepted and then the theory
has to be Lagrangean [6].

By varying the gravitational tensor potential /s in the action integral I,
and equating to zero,

(I) <§)I =0,
the field equations are obtained.
By varying the dynamical variables and equating to zero,

(2) 3l =o,

[£3)

the equations of motion are obtained.

The action integral is:
® =[x,

where x* are the coordinates of the generic point of the pseudo-Euclidean
space-time, & is the determinant of the fundamental metric tensor a,5 of the
pseudo-Euclidean space-time, and L is the Lagrangean density. The latter
can be seen as the sum of a part relevant to pure field terms Ly and a part
relevant to matter plus interaction Ly

@ | L=Ly+Lu.

Taking into account that in this kind of theories the maximum order
of the derivatives of {,g is the second one, eq. (1) is equivalent to

oL _( aL") ( 9L>) _
® g Mgy ;‘Y+ Mapivn / vr *

where semicolons stand for covariant differentiation.
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Here we consider .only the case of matter made out ‘of incoherent point-
like particles. Taking into account that in the pseudo-Euclidean space-time
the components of the four velocity of a generic particle are subjected to
the constraint

(6) g, =1,

(where 3% = dz%/ds, ds* = 4,43 ds® ds®, and we put the light speed ¢ = 1),
eq. (2) is equivalent to [7, 8]

d oL L _ D [{oL ,
2 E*_—*K[(Tgﬁz—L)za]’

where D/ds denotes covariant differentiation.
At first order (in the coupling constant f) the well known Lagrangean
densities are

<8> Li‘“l) = % “I’aB;Y q)aﬁ;-y - ‘*I’uﬁ;Y ¢av;ﬁ + LI";IB;B ‘p;a - % kI";a ¢;a ’
and
5 .
©) L = —2 | &¢AQ* (x—2y) =
Y —a
2z : .0 .
= V——_q; / ds 8 (x — 2() g (flop — @up) & .

where 7, is the proper mass and z(, the coordinates of the g-th particle of
the considered incoherent matter and, in general, Af;‘; is defined by L{ =

=(—a) %, { Ay 8 (x — 2,) d, ¢ being an auxiliary integration variable.

Putting egs. (8) and (9) into egs. (5) gives the first order field equations

(IO) DanB . ¢G(a;B)o + LIJ;aB + aae (qfﬂ\;d . D‘L) — fT(p)aB_
where
(11) T@e® " ! - ; g j ds ' (x — z.) &% 4°,

—_ q

and where o = .. and parentheses containing two indices denote
symmetrization.

Putting eqgs. (8) and (9) into egs. (7) gives the first order equations of
motion '

. . . A . . A
(12) (1 + Sy z'(Lq) z‘('«p) Ziga — 2 [bar gl z}{q) = — fpa zfq) g »

for the ¢g-th particle.
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Egs. (10) and (12) are not consistent. Indeed the left hand side (LHS)
of egs. (10) is divergenceless, thus the same must happen for the RHS.
But this is in contrast with egs. (12). To overcome this drawback one takes
as second order field equations egs. (10) in which the RHS has been sub-
stituted by the total energy-momentum tensor T°® ie. a symmetric tensor
whose divergence equated to zero gives eqgs (12). It can be shown that a parti-
cular energy-momentum tensor can be obtained [9, 10]as

3 > 3(—aL
(13) Ts = V—ia (VS - )

2 [a(V’:EL) B (a(VjL));Y].

Y —a da”B da®

It is given explicitly in egs. (13) of Ref. [10] (where the presence of an electro-
magnetic field is also considered). But it is not unique [11], since it can be
implemented by the most general second order divergenceless tensor #,5 con-
taining g arbitrary parameters (4 if one requires the theory to be Lagrangean).
Eventually we have:

(I4> Taﬁ == Tuﬁ “I“»taﬁ .

This is the tensor to be substituted for T at the RHS of (10) in order to
have the second order field equations.

Now one can get the second order action integral I'® as the one which
inserted in (1) gives the second order field equations. Then, by (7), one gets
the second order equations of motion. Again these two sets of equations are
not consistent as it happened for the first order. One repeats the procedure
and the method becomes iterative. The same happens also if one assumes
the Hilbert gauge to all orders [12].

3. CONVERGENCE (TO GENERAL RELATIVITY)

As to the pure field terms it was shown by Deser [5] that the exact action
integral is reached at the third step of the iteration. He obtains such result
by writing the first order action integral in the Palatini form and taking as
‘“initial variables” the contravariant components of the fundamental metric
tensor. The same result has been obtained taking into account all the arbi-
trariness of the energy-momentum tensor, both ‘assuming the Hilbert gauge
[12] and without such limitation [11].

As to the matter part (pure matter and interaction terms between matter
and gravitational potential) the argument of minimal prescription is used [5].
A deduction of such minimal prescription for the matter terms is here given.
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Let L be the exact Lagrangean density to which the theory converges,
and L™ the Lagrangean density of the z-th step.

As we have seen in the preceding section 8L™/8¢,s = o gives the #-th order
field equations. The same equations can also be obtained starting from the
(# — 1)-th order field equations by substituting in the RHS of them Ty =
=2(—a) " PIEL"Y {=2)/8a*® for T% V. We are now considering only
the matter terms of such equations, that is terms in which the matter appears
either alone or coupled with the gravitational field. Such terms appear only
at the RHS of field equations written in the form of egs. (10). Thus, if we
call L{P the part of the n-th order Lagrangean density relevant to matter,
our procedure implies

2 S Vy—a) _ Ly
(r5) S —a 8as T 8

The minus sign comes from the fact that S3L{f’/8¢,s gives the matter terms
of the field equations written at the LHS of them, i.e. it gives — fT™*®,

Now it can be noticed that L{f’, because of its structure, does depend
neither on the derivatives of 4,3 nor on the derivatives of ¢,53. (In passing
we can notice that none of these lucky circumstances does happen for
the other part of the Lagrangean density, that is for pure field terms).
This fact is taken into account by using the symbols 3/9a,; and 9/3{,s for
the functional derivatives 3/34,5 and 8/8y,s. Hence, eqgs. (15) can be writ-
ten as

2y Y —a) _2@WY—a)
adag aflag !

(16)

where /4,3 = — 2 fl,a. Because of the structure of Ly [see egs. (9)], and
because it cannot simultaneously be s, = zj; for every a if ¢ 7, eqs. (16)
imply

(n—1) n)
g~ Ay
adag aﬁas

(17)

’

where A is calculated with x%, = * AY)} is a function of a4 (2) and of
%43 (2).  Equations (17) are ten for each # and ¢ (¢, =0,1,2,3).

To the set of conditions (17) one must add that A% is the exact expres-
sion of Ay when no gravitational field is present, i.e.

(18) A% (@a,h) = Ay (a,0) =94 (@).

The symbols a and & denote that A((gg depends on all the components .5
and /ug; the function ¢, (a) is introduced for shortening the notation.
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Eliminating the gravitational field gives, to every order of approximation,
the zeroth order approximation; we have therefore to add the condition

(19) AR (a,0) = Ay (a,0) = g4 (a) .

For sake of simplicity, let us first consider one particle only and the
monodimensional case. Here the eqs. (17), (18) and (19) reduce to

oW gfn

(20) % ea

(21) O, h)y=f(a,0)=¢(a),
(22) f™(a,0)=f(a,0)=9(),

where we have substituted A{] by a function f® (a,%) with a = a(s)
and 2 = 7 (2).

Equations (20) imply
P
(23) @ h = o+ [ LD g

By eqgs. (21), (22), and (23) we get
(24) S (a, 1) = 2, S Lo @),

where Y is the j-th order derivative of ¢ with respect to a. If the se-
quence {f™} converges uniformly, in a domain D, to a function f(z, %),

it is
(25) fla,B=9¢(@+h.
Let us now generalize to our case where a and A have both ten com-

ponents, and egs. (17) are ten for each # andg By egs. (17), (18), and (19)
one can obtain

(n}
(26) ((rq? (“ k) = ¢, (@) + /g SCP(q)( ) +e ( B 38 ) o (@ -

If the sequence {A{} uniformily converges to a function A, (@, %), eq. (26)
implies

(7 Ay (a,h) =g, (@t h) =A@+ h).

This is what one wusually calls minimal prescription.
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In our case of point-like particles it is

dx® da®\ 12
(28) i A((g; = My (“aB ar »cF)

By eq. (26) one gets
da® da®\M?
A .8
(29) — AQ = my ZJ ( ) (frop 8" &%) (‘laﬁ W?)

The sequence {A{¥} uniformly (with respect /,g) converges for z* = zf, if
| Zyp 20 z'?q)l << 1. Under this condition we have

xa dxﬁ ] 1/2

(30 — Ay = g [ s + ) S %

Now we make the hypothesis that the exact A, of the theory is an
analytic function of the /.

Under this hypothesis we can make an analytic continuation of A, on the
real axis for 4,q %, 2&) >—1. By the identity principle for analytic functions,
the two functions (the original and the continued one) will remain the same
(given by eq. (30)) in the whole domain /g 5% 35 = — 1.

If the theory is reinterpreted [1, 5, 11] in a Riemannian space whose
fundamental metric tensor in given by

(3I> Euf = Zap + }laﬁ ’

the exact A, (and hence the exact action integral Iy) in such space time is
obtained by A%} (or by Ii7)) of the flat space-time by the substitution g — gug .
In such a way the matter term of general relativity is obtained:

(32> IM = Z [ m(q)dsz;) ’
q v

where the star denotes that dsg, has been calculated in the curved space-time.
The condition Z,g 2(, z'?q) = — 1 corresponds to dsz;z) =0, i.e. to having speeds
lower than the light speed.

As to the pure field terms, the convergence to general relativity was pro-
ved by Deser [5]. Thus the equivalence of the two approaches to general
relativity (thé curved space-time approach and the field theory approach in
the flat space-time) seems to be proved. The convenience of the use of one
or of the other approach will only be technical and will depend on the parti-
cular problem to be treated.

REFERENCES

[1] W. THIRRING (1961) — « Ann. Phys. (N. Y.)», 16, 96.
[2] R.U. SEXL (1967) - «Fortschr. Phys.», 15, 269.
[3] V.I. OGIEVETSKY and I. V. POLUBARINOV (1965) ~ « Ann. Phys. (N. Y.)», 35, 167.



78 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LXIII - Ferie 1977

[4] W. Wyss (1965) - « Helv. Phys. Acta», 38, 469.

[5] S. DESER (1970) - « Gen. Relativ. Gravit.», I, 9.

[6] R. H. DICKE (1964) ~ The Theoretical Significance of Experimental Relativity (New
York, N.Y.).

[71 G. KALMAN (1961) - « Phys. Rev.», 123, 384.

[8] G. CAVALLERI and G. SPINELLI (1974) ~ « Nuovo Cimento Lett.» 9, 325.

[9] L.D. LANDAU and E. M. LIFSHITZ (1962) - T/e Classical Theory of Fields, second edition
(Oxford, London, England), Sec. 94.

[10] G. CAVALLERI and G. SPINELLI (1975) - « Phys. Rev.», 12D, 2200.

[11] G. CAVALLERT and G. SPINELLI (1975) —~ « Phys. Rev.», 12D, 2203.

[12] G. SPINELLI (1975) — «Meccanica », X, 32.



