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Topologia. — Compactifications and function algebras. Nota di
Davip S. Woobprurr, presentata ® dal Socio G. Zarppa.

RIASSUNTO. — Si costruiscono compattificazioni. di uno spazio X usando certe sotti-
gliezze di funzioni su X (le cosiddette algebre di stone complete) che sono valutate in un campo
completo separato uniforme £. In tal modo si generalizzano le compattificazioni introdotte
da altri autori.

SECTION 1. INTRODUCTION

We shall construct compactifications of a space X using certain sub-
algebras of functions F, to be called complete stone algebras, on the space X
which are valued in a complete separated uniform field 2. This construction
generalizes compactifications found by Sultan [17] and Bachman, Becken-
stein, Narici and Warner [1]. We then find generalizations of the Stone-Cech
compactification, the Gelfand-Kolmogoroff Theorem, and Wallman compac-
tifications. We will find that these theories can be fully generalized by using
complete stone algebras of functions which have their values in a locally
compact field. '

The major construction is given in Section 2): if F is a complete stone
algebra on a space X valued in a complete uniform field, then there corresponds
to F a compactification for X which we denote By X, a generalization of the
Stone-Cech compactification. If the field 4 is locally compact, then F is iso-
morphic to C (Br X, £), which is the set of all continuous £-valued functions
of Br X, and we generalize a result found in Gelfand, Raikov and Shilov [6]
by finding a one-to-one correspondance between complete stone algebras
and compactifications of X. It is further shown that when F is a complete
stone algebra over a locally compact field 4, then By X is homeomorphic to
the space of £-valued homomorphisms on F, thus displaying a generalized
Gelfand-Kolmogoroff Theorem.

In Section 3) it is shown that when a condition of normality is demanded
of an algebra F, a Wallman compactification of X homeomorphic to B X can
be constructed using the zerosets of F. This compactification generalizes
that found by Gordon [8] for real valued functions, and, since real valued
function algebras which are closed under bounded inversion are shown to
be normal in our sense, our Wallman construction subsumes the 8-like compac-
tifications of Mrowka [12].

More particulars can be found in Woodruff [20].

(*) Nella seduta del 14 maggio 1977.
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Knowledge of zerosets; filters, ultraregular and ultranormal spaces, and
nonarchimedean fields is assumed. R ,C and H will denote respectively the
reals, the complex numbers, and the quaternions. Given a set X and a topo-
logical field £,C (X, £) will be the algebra of continuous functions on X over
% and C* (X, £) will be the subalgebra of C (X , £) comprised of functions with
relatively compact range. A subalgebra F of C* (X, £) will be called a stone
algebra if F contains constant functions, separates points in X (i.e., given
x,y € X such that x 5% y, then there exists f€ F such that f (#) % f (#)), and
self-adjoint when £ is C or H. Given that £ is a uniform space, F is called
a complete stone algebra if it is a stone algebra which is complete in the uni-
formity of uniform convergence ([11], p. 226). A space X will be said to have
the weak-F topology if it has the weakest topology for which each function

“of F is continuous. X will be called &-completely regular (by F) if there exists
a complete stone algebra (specifically F) for X over £ for which X has the
weak-F topology. % Will be called a weak-F uniformity for X if it is the weakest
for which all functions in F are uniformly continuous. F will be called normal
if whenever Z, and Z, are disjoint zerosets in Z (F), then there exists f& F such
that f(Z,) = o and f(Z,) = 1. This is the (generalized) normal condition of
Sultan [17], and it is stronger than the normal conditions of Frink [5], Gordan
[8] and Wallman. ‘

PROPOSITION 1.1. If k ¢s a locally compact topological field, then it is
R,C,H or a complete nonarchimedean valued field.

Proof. TFollows from [10] and [3], 1) VI 9.3, Cor. 2.

PROPOSITION 1.2. If T is compact and k is a locally compact field then

a) k is complete and C (T , k) is complete in the topology of uniform

convergence,
b) T has the weak-C (T , k) topology,

c) If k is archimedean, C (T , k) is a complete stone algebra. If k is
nonarchimedean, C (T , k) is a complete stone algebra iff T is wultravegular.

All of the following hold when in addition C (T , ) is guarenteed to be a
complete stone algebra:

“d) if A,Bc T are disjoint closed sets, then there exists f € C(T, k) such
that f(A) =0 and f(B) =1,

e) (Stone-Weierstrass Theorem) C (T , k) is the unique complete stone
algebra for T over k.

§) the zerosets of C(T , k) are a base for the topology of T,
g) The zerosets of C (T , k) are a base for the neighborhoods of T,

h) iof & is commutative, the maximal ideals of C (T , k) arve of the form
M, ={feC(T, & lf(t) = 0 for some t€T}.
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SECTION 2. THE Br X COMPACTIFICATION

Let X be a set, £ be a T, complete topological field, and F be a complete
stone algebra over £. Since the range of each f € F is contained in a relatively
compact set, we may write f; (X) < S; for each f;€ F where S, is a compact
set in 2. There exists a unique separable uniformity for S;, and we may give
X the weak-F uniformity, %, making each f; € F uniformly continuous from
X to S; ([3] 2), 11, 2.3 Prop. 4). If (X, %) is the uniform space, then X is
T, since £ is T, and F separates points. Let the map ¢ : X — =S; be defined
as ¢ (x) = {f; (@) | fi€ F}. Then since X has the weakest uniformity such
that each f; € F is uniformly continuous, ¢ is a uniform isomorphism from
(X, %) onto ¢ (X) with the relative product topology of =nS; ([3] 2) II, P9,
Prop. 18). Then ¢ is a homeomorphism from X to ¢ (X) when we give X the
weak-F topology. Indeed the following holds as also in [17].

PROPOSITION 2.1. Let X have the weak-F topology, then § (X)< nS; is
a Ty compactification of X, and eack f,€ F can be extended uniquely to a wuni-
formly continuous function f;: ¢ (X) = S;.

On ¢ (X) = X define an equivalence relation R as follows: if s,2eX
then s ~¢iff f(s) = f(¢) for all feF. Let s’ denote the class of elements
equivalent to s, and take By X = X/R to be the usual quotient space with
quotient topology @g. Let p be the projection map p: X — fp X defined by
? (&) =17, then one readily shows that p: X — p (X) is a homeomorphism,
and hereafter we identify X and p(X). Now, for each f€F define /® ¢ F®:
:Bp X — £ by fP(#') = f(¢) for all # € By X such that ze#. The following is
easily proved:

LEMMA 2.2. For eack feF ,f* is a continuous extension of I f— f‘5 is
an injection, and F® separates points in Py X.

THEOREM 2.3. Let F be a complete stone algebra for X over k, where k is
a T, complete topological freld. Then if X has the weak-F topology, Br X, is a
T, compactification of X. Further, if k is locally compact, then C By X , £) = F®
whick is isomorphic to F.

Proof. Bp X is certainly compact and T,. Let V, be an open neighborhood
of any x € p (X), then p71 (V) N X % o since X is dense in X = p (X). Then
V.Np(X)# @ for all x€BrX and each neighborhood V, of x, showing
that X is dense in 85 X. Now, F® is a stone subalgebra of C (85 X, 4), then it
suffices to show that F® is complete by 1.2. That F® is complete follows from
the fact that F is complete, from |f*(2) —g°(®)| = |f () — g (¢)|, and from
the fact that X is dense in By X. Clearly F is isomorphic to F®.

PROPOSITION 2.4. Let'T be a Ty compactification of X, and let k be a locally
compact field such that C (T , k) is a complete stone algebra. Letting F be the
set of restrictions of C(T , k) to X, T is /wmeomgrp/zz’c 2o By X.
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Proof. T is a uniform space in the weak-C (T, £) topology. If X, %
is the restricted uniform space, then # is the weak-F uniformity. Since the
compactification By X is a completion of X in %, then the identity map on
X extends to a uniform isomorphism of T onto By X ([3] II, P 3.7, Cor. to
Them. 2). '

PROPOSITION 2.5. Let %y, by be locally compact fields, and let p. be an iso-
metric isomorphism taking ko, into ky. If ¥y and Fy are complete stone algebras
Jor X over ky and ky respectively, then woF, is a complete stone algebra and
poFyc Fy iff B, X < Br, X.

Proof. Clearly woF, is a complete stone algebra. Denote 5, X as §; X
and Br, X as B, X. Suppose B, X < B; X, then there exists ¢, continuous,
such that ¢ is the identity on X and ¢:£; X —§; X. Now for each fe F,;,
wofProm = (uof)® holds on B, X, for both sides are continuous and agree on X.
Thus pofPegeC (B, X, 4) =F, by 2.3. But when restricted to X this shows
that pof € F, for each fe F,. Conversely, suppose poF,cF,. Let (X, %)
and (X, %,) be the respective weak-F,; and weak-F, uniform spaces, and let
7 be the identity on X such that 7: (X, %) — (X, %,). If V, is any entourage
in the uniform structure of 4;, and V, = (uX@)V;, then (FX}f)~1 (V) =
= (mof X wof)1(Vy). Then each subbasis entourage in %, is a member of %,,
and thus 7: (X, %,) - (X, %,) is uniformly continuous. Then 7 may be
be extended to a uniformly continuous map ¢: 8, X —; X.

Propositions 2.3, 2.4 and 2.5 show that there exists an order preserving
one-to-one correspondance between the complete stone algebras over X and
the T, compactifications of X.

"The following generalize readily from [1]. Use is made of the smallest
closed subalgebra Cg (X, £) of C*(X, %) which contains the characteristic
functions and B, X, the Banachewski compacification ([1]).

PROPOSITION 2.6. Cg (X, %) =C* (X, &) for any nonarchimedean field
k when'X s ultrarvegular, and for any locally compact field k when X is ultra-
normal.

PROPOSITION 2.7. Let C*=C*(X,k). If X is wltraregular, then
Bs = Bo X = Ber X for all nonarchimedean fields k, and if X is ultranormal
then By X = Bee X =B X for all locally compact fields k.

One obtains a generalization of the Gelfand-Kolmogoroff theorem as
follows; take # (F , %), Oy to be the A-valued homomorphisms on F with
the weak-J; topology, where J;:5# — % is defined as J; (%) =/ (%) for all
k€. Then generalizing [17]:

PROPOSITION 2.8. If k is a commutative locally compact field, and ¥ is
a complete stone algebra for X over k then By X is homeomorphic to # (F , k).

COROLLARY 2.9. If T is compact and k is R or C then T is homeomorphic
to H(C(T , k), k). If T is compact and ultraregular, and k. is any locally com-
pact field, then T is homeororphic to  (C (T , k), A).
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SECTION 3. A WALLMAN COMPACTIFICATION

Construction of a Wallman compactification will proceed using the foll-
owing condition: Condition N: Given F < C*(X , £), ) X is T, and A-com-
pletely regular by F where 2 is locally compact. 4) The intersection of two
zerosets of F is a zeroset. ¢) If Z;,Z, are zerosets, then Z;NZy = Z,NZ,,
where closure is in B X. &) If Z,NZ,= @ then Z,NZ; = &.

Z-filters are nonempty subfamilies of Z (F), and properties like those of
filters are easily proved of them. Let W(Z,F) = {F | & is a Z-ultrafilter
in Z (F)}, and consider the collection {2 (Z)|Z €Z (F)} of all sets 2 (Z) =
={FeW(Z,F)|2e¢ZF}. If Fe€2(Z)UVD(Z,), then Z,,Z,e #. Thus
Z,NZ,€ F since F is a Z-ultrafilter, and then F €2 (Z,NZ,). We see
then that 2 (Z,)VU 2 (Z,) < 2 (Z,NZ,), from which it follows that {2 (Z)|
|Z€Z (F)} is a base of closed sets for some topology #° on W (Z,F).
We suppose that W (Z, F) is topologized by #". Denote {ZeZ (F)|teZ}
by & (¢), where 2€ By X (all closures will be in B X). One can show
under Condition N that & (¢) is a Z-ultrafilter. Since t€Z for all Ze F (¢)
then ¢ is an adherence point of % (f). We define 0:8; X - W (Z,F)
so that #— & (). Under condition N, if & is a Z-ultrafilter in X then
F ={7|Ze F} is a Z-ultrafiter. That is, & is an ultrafilter in the
collection of sets {Z|ZeZ (F)} = Z (F).

LEMMA 31 If X is Ty, then it is k-completely regular by F iff Z (F) is a
basis of closed sets of X. If X is k-completely vegular by ¥ where b is locally
compact, then Z(F) is a base of neighborkoods for X.

Proof. Similar to classical proofs.

THEOREM; 3.2. Under condition N ,Br X is homeomorphic to W (Z , F).

Proof. 9 is surjective, for suppose # €W (Z, F). Let # denote {Z|Ze F},
then & is a Z-ultrafilter in By X. Since & is a filter base in 85 X, we may
choose %, an ultrafilter such that % > #, which must converge to %€ g X
since By X is compact, T,. But then #, is an adherence point of %, hence of
F, thus F = F (¢,) = 0(%,). 0 is injective, for given #,s€Bp X, ¢ 5%,
there exists disjoint zeroset neighborhoods Z; and Z, in 8§ X such that eV, < Z,
and s eV, c Z,, where V,,V, are open in Br X (by 3.1). Then zeV,NX <
= V,nX, from which #€Z,AX =7, showing that Z,e€ # (¥). Similarly,
Z,e F (s), and since Z, and Z, are disjoint, & (¥) #~ & (5). Next, it can be
shown that the collection {Z|Z €Z (F)} forms a base for the closed sets on
Br X, then since 0 is a bijection, the identity 6 (Z) = {0 () |£€Z} = {Z ()]
|teZ} ={F (¥)|Ze F ()} displays a one-to-one correspondance between
the closed sets in the topologies of B X and W (Z, F). Thus 6 and 9-! are
continuous. '

4. — RENDICONTI 1977, vol. LXIII, fasc. 1-2.
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Almost all that is needed for Condition N to be satisfied is that F be a
normal algebra:

PROPOSITION 3.3. Let X be k-completely vegular by ¥ where k is locally
compact, and let Z,,Z,€Z (F). If F is normal, then 7,7, = Z,NZ, and
Z,NZy= @ implies that 7, N7, = &. -

Proof. If Z,NZ, = @, there exists f such that /(Z)) = o0 and f (Z,)=1.
Thus Z,c Z(f)< Z(f*) and Z,cZ(1 —f) < Z (1 —/)%). Hence Z,< Z(f*)
and Zy< Z((1 —/)"). But then f*(Z)=o0 and f*(Z) =1 from which
Z,NZy= . Now, suppose x € Z; M Z,; to show that x € Z,n7Z, it is sufficient
to show that ZN(Z,NZ,)# @ for each zeroset neighborhood Z of x (3.1).
Let V be such that xe V< Z. Since x€Z; N7, we have that xeVNZ, <
<ZNZ;. But then xeVNZ,=ZnZ,. Similarly x€ZnZ,, and since
Z,NZy,= @ implies Z,N7, = @, we have (ZNZ)N(ZNZ)F# &.

The final requirement is that the intersection of zerosets be a zeroset:

PROPOSITION 3.4. If k£ is a nonalgebraically closed topological field, and
F is an algebra of functions for X over k, them the intersection of two zerosets
in ¥ is a zeroset. Further, if ¥ contains the inverse of each of its invertible func-
tions, then ¥ is a normal algebra.

Proof. Since % -is not algebraically closed, there exists an irreducible
polynomial over &, P =" + a2, 2t 4 -+ + a,x + @, with » > 1. - Let
f,ge€F and define 2=/ +a,, g+ - +a fg"1+a,¢" Then
Z(h)=Z(f)NZ(g) as is shown in [1] Them. 5. Now, if Z (f) and Z (g) are
distinct zerosets it follows that % (x) %o for all x € X, then % is invertible
in F. Then define 2eF as £=j"//. Since £(x) =o for allx€Z (f) and £(x) =1
for all x€Z (¢), F is normal.

PROPOSITION 3.5. If & is locally compact and either nontrivially valued
or nonalgebraically closed, and if X is T, and k-completely regular by a novmal
algebra F, then By X is homeomorphic to W (Z , F).

Proof. All that remains is to verify Condition N 4), which is well known
when £ is R, C or H, and follows from 3.4 when £ is nonalgebraically closed.
If % is nonarchimedean and nontrivially valued, then £ is discretely valued
([14] 1.4, Them. 2 Cor.), and if » < 1 is a generator of the value group of £
then 2% — p is irreducible where | p | = 7; thus £ is nonalgebraically closed
and 3.4 may be used.

When £ is R, if F is inverse closed (F contains the inverse of all its inver-
tible functions), then F is normal (3.4). Thus the B-like compactifications
of Mrowka [12] are included among the Br X compactifications when F is
normal. It would be of interest to see whether a function algebra must be
inverse closed in order to be normal.
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