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Geometria differenziale. — Decom positions of recurrent conformal
and Weyl's projective curvature tensors. Nota di SHR1 Krisuna DEo
Dusey, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — In analogia con quanto gid effettuato da Takano [4], Sinha e Singh [3]
Singh [2], qui si ottengono wvarie decomposizioni dei tensori ricorrenti di curvature
R}ek'l"z, C;-ek'l"Z e W}, in uno spazio speciale di Kawaguchi.

1. INTRODUCTION

In an #-dimensional special Kawaguchi space K, of order 2, the arc
length of a curve x? = 2% (¢) is given by the integral (Kawaguchi [1])

(1.1) s =f[Ai (x, x’) ¥+ B(x, x')]lli’ de , p#*o , 3z,

where #' = dxi/ds and #i= d?xi/ds
Let v* be a contravariant vector field homogeneous of degree zero with
respect to x%. The covariant derivatives of »¢ are defined by ([1])

T @ 1 k N k
Vo' = 90" — oy I'G + Ty o5

vt

1. !
x?

The conformal curvature tensor C}}Il"i in a special Kawaguchi space is
defined as

(1.2) =Ryt —
5 . 5 (. . 5t . I s
— % gt % (RE_ )% Ry S
w1 ’k+n—1 it n—t—lsl’ n—1I B TR
where
’ EJHZ‘ EJH;,C . B . n . A .
(1.3) W= — g T I7; Ty, — MM 1035 + 105 Mg gy — TGy T,
(1.4) Rg=Rg* , Sh=Rj"
and
(1.5) Rig " = — Ry

(*) Nella seduta del 23 giugno 1977.
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Also, we have

(16) Ja GG =0,
(t7) Chat +Cli " =o

and

(1.8) St =Clhy A

The Weyl tensor in a special Kawaguchi space is expressed as

. ; ; 1 sH¢ 2H )
. i [ __Hsz . k. \) 15
(1.9) Wi = H; % w1 ( > e x*
where
(1.10) Hi=Ki'# | H=- ! _Hi.

The Weyl projective curvature tensors have the following properties:

(1.11) Wi + Wiy + Wi = o,

(1.12) Wha! =W; , Wigsd =Wy,

(1.13) w=— Wiy,

(1.14) Wi = Ci "t 4 &,

(1.1%) Wiy = Wi

(1.16) Wi=o0 , Wisf=o0 , Wgy=o.

Kerog @ . N . . . .
The curvature tensor Rz ™ in a special Kawaguchi space is said to be
recurrent or bi-recurrent, if it satisfies the conditions

(1.17) Vin R}ek.l“i = Uy R;elclz » Um #0
or
(t18) Vo Va Rl = o R (RS #0)

respectively, in which v, and «,, are the recurrence vector field and the
recurrence tensor field.

Equations (1.2), (1.4), (1.17), (1.18) yield that the curvature tensor
C?k',"i‘ is recurrent and bi-recurrent with the same recurrence vector field
and recurrence tensor field as in the case of R}, that is,

(1.19) VaChi ' =wmCii* , ©C'#0
and

(1.20) VoVaCiii ' = 0 Ciit ,  Chiis0).
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The Weyl projective curvature tensor WY, in a special Kawaguchi space
is said to be recurrent or bi-recurrent, if it satisfies the conditions

(I.ZI) V W]Ll = 7\ WJLl ‘ <W;kl # O)
or
(1.22) Vi Vn W;.'kl = yn ngz (W;'kl #0)

respectively, where A, and &, are the recurrence vector field and the recur-
rence tensor field.

2. DECOMPOSITION OF RECURRENT CURVATURE TENSOR Rjy*

We assume that the decomposition of the recurrent curvature tensor
Rj; " has the following form

(2.[) R?]‘;l“i = 7’,5 s]'lcl y

where €3 is a non zero decomposed tensor field and #* is a non zero vector
field satisfying the condition

(2.2) U, =1,

in which o, is the recurrence vector field.
We suppose that the curvature tensor is recurrent of the first order.
Equations (1.17) and (2.1) yield

(2:3) (Vm7®) €jua =+ 7* Vin Sty = U7 sy

If we suppose that (V,, 7ij = 0, then (2.3) can be written as
(2.4) | 7 (Vin €ty — Um Ejaa) = O -

Since »* £ 0

(2:5) Vin €t == Um Ejta »

which gives the following:

 THEOREM (2.1). If the recurrent curvature tensor Rigy * has the decompo-
sition (2.1) and the vector field v satisfies the conditionn V7' = O then the
decomposed tensor ﬁela’ eju 1S recurrent with the same vecurrence vector Sreld

as the ‘tensor Ry "

THEOREM (2.2). If #i = &% and the recurrent curvature tensor Ryy"* has .
the decomposition (2.1) then the decomposed tensor field &3kt is recurrent with
the same recurremce vector field as. the tensor Ry
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Equations (1.3) and (2.1) yield
(2.6) Ejrg = — Ekji -
Using the fact that II% = IIj; and equation (1.3), we have
(2.7) Rjy ™"+ Ri; "+ R = 0.
Equations (2.1) and (2.7) yield
(2.8) €m + euy T Em =o0.

Contracting the indices 7,7 and 7, j in equation (2.1) and using (1.4), we get

(2.9) S;'ek = 7" €jtq
and

Ry = 7*
(2.10) 0=7" € -

THEOREM (2.3). If the recurvent curvature temsor Ry ™ is decomposed
with the tensor field ey then a sufficient condition in order that Ry * is equal
to the conformal curvature tensor Cyy ™ is that the relation

(2.11) 8 (n— ) ejpy + (1 + 1) (B ey — Sk egz) + Sk gyjy — Sieg = 0
holds.

Proof. Equations (1.2), (2.1), (2.9) and (2.10) yield

(2.12) C:);]cllb = 7"i €k —
4 g i
_— (n_l_ I) (%._I) [81 (%—I) Sjka‘—sk (7’1 + I) qul—l—

+ 8;: €ija + 8; (” -+ I) Carg — 8; skla] .
The proof of the above theorem is an immediate consequence of equations
(2.1), (2.11) and (2.12). :

THEOREM (2.4). If the bi-vecurrent curvature tensor Riy'* has the decom-
position (2.1) and the vector field r' satisfies the condition V, V7t = 0 then
the decomposed tensor field ey is bi-recurrent with the same bi-recurrence tensor
foeld as the tensor Ry "

Proof. Equations (1.18) and (2.1) yield
(2.13) 75 (Vo Viu 10— pm i) + g1 (Vp Vi #) = 0.

Using the relation V, V,, 7" = o and the fact that 7% -~ o, we find that e is
bi-recurrent with the bi-recurrence tensor field «,,.



764 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LXII - giugno 1977

3. DECOMPOSITIONS OF RECURRENT CONFORMAL CURVATURE TENSORS

We suppose that the decomposition of the recurrent conformal curvature
tensor Cj; * has the following form:

(3-1) Chi ' = stom,

where g is a non zero decomposed tensor field and s? is a non zero vector
field satisfying the condition :

(3.2) st Up =1,

in which 7, is the recurrence vector field.
Equations (1.6), (1.7) and (3.1) yield

(3-3) eiig + Pmj T Pk = O,
(3-4) Piry T Prjt = O -

Multiplying equation (3.1) by #! and using (1.8), we get

(3-5) C;?kmi = sk »
where
(3.6) Pk = Pjiy ¥

Equations (1.19) and (3.1) yield
3.7 (Vin 0itg — m 0s1) S + (Vi Si) Pjkt = O+

The following theorems are an immediate consequence of equation (3.7):

THEOREM (3.1). If the recurrent conformal curvature tensor Cyy™* has the
decomposition (3.1) and the vector field st satisfies the condition V,, st = o then
the decomposed tensor field o is recurrent with the same recurvence vector field
as the tensor Cly 't ‘

THEOREM (3.2). If the recurrent conformal curvature tensor Cly " has the
decomposition Cy " = x* oy, then the decomposed tensor gy is recurrent with
the same recurvence vector field as the tensor Cyy "

Equations (1.20) and (3.1) give
(3.8) S (Vp Vi pjis — pm 0j) + 0t Vo Vi ¥ = 0.
Using the relation V, V,, s' = 0 and the fact s% 540, we find that

(3.9) Vo Vi @bt = Opm @i -



SHRI KRISHNA DEO DUBEY, Decompositions of recurrent conformal, ecc. 765

Thus, we have

THEOREM (3.3). If the bi-recurrent conformal curvature temsor has the
decomposition (3.1) and the vector field st satisfies the condition V,V, st = o
then the decomposed tensor ﬁeld Ojm 15 bi-recurvemt with the same bi-reccurvence
tensor field as the tensor Cyy ™t

We suppose that the recurrent conformal curvature tensor Cjy ' has
the decomposition in the following form:

(3.10) Chy " = X du
where {y (v, #) is a decomposed tensor field and X} (x, %) is a tensor field.

THEOREM (3.4). If the recurvent conformal curvature temsor - has the
decomposition (3.10), then the following identity holds:

(3.11) Dibu T 2i by + Pdp =0,
where
(3-12) 2i=Xjo;.

Proof. Equations (1.6) and (3.10) yield
(3.13) X + Xy + X p=o0.

Multiplying (3.13) by the recurrence vector field »; and using (3.12), we
obtain the identity (3.11).

Multiplying equation (3.10) by the recurrence vector field »; and using
relation (3.12) we get

(3.14) v Cit " = p5dm -
Equations (1.7) and (3.10) give

(3.15) Xidm=—Xidy.

Multiplying (3.15) by #; and using (3.12), we get

(3.16) 2ibu = —"2rbj .
Equations (3.11) and (3.16) yield the following:

THEOREM (3.5). If the recurremt conformal curvature tensor has the
decomposition (3.10), then the identity.

(3.17) e = 25 (b — bu)
holds.
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Equations (1.19) and (3.10) give
(3.18) X5 (Vo Yt — Vm Ya) + (Vi XD g = 0.
We assume that V,, X = o. Since X} # o, equation (3.18) gives the following:

THEOREM (3.6). If the recurrent conformal curvature tensor has the decom-
position (3.10) and the tensor field X5 satisfies the condition V,, Xi = o then
the decomposed tensor field Ly is recurremt with the same recurvemce vector
field as the tensor Cly "

In a similar way, equations (1.20) and (3.10) yield the following:

THEOREM (3.7). If the bi-vecurremt conformal curvature tensor has the
decomposition (3.10) and the tensor field X; satisfies the condition V,V, Xj=o0
then the decomposed tensor field Yy is vecurremt with the same bi-recurrence
tensor field as the tensor Cyy .

4. DECOMPOSITION OF RECURRENT WEVYL’S PROJECTIVE CURVATURE TENSORS
We suppose that the Weyl projective curvature tensor has the following

decomposition:

(4.1) =& o,

where 6, is a non zero decomposed tensor field and £’ is a-non zero vector
field satisfying the condition

(4-2) =1,

A; being the recurrence vector field.
Equations (1.11), (1.13) and (4.1) give

(4-3) Gji  Omj T Opjk = O,

49 Okt = — Okji -

Multiplying equation (4.1) by #!then by 27 and using (1.12), we get
(4-5)‘ =E oy,

(4.6) W}é = Ei Cf »

in which we have used the notations:

(4~7>. ‘ij = G;i 2,

(48) G = O'jkﬂéj.
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We consider the conformal and Weyl’s curvature tensors having the
decomposition (3.1) and (4.1) respectively. Putting

(49) ok = Qi 4 A,
equations (1.14), (3.1), (4.1) and (4.6) yield the relation
(4.10) E o = pps’

Thus, we have

THEOREM (4.1). If the comformal and Weyl's curvature temsor have the
decomposition (3.1) and (4.1) respectively and £ = s' then the vecior fields ¢
and oy, are equal.

THEOREM (4.2). If the recurveni Weyl's projective curvature temsor has
the decomposition (4.1) and the vector field &' satisfies the condition V&' = o
then the decomposed tensor field oy is vecurrent with the same recurvence vector
field as the tensor Wiy .

THEOREM (4.3). If the recurrent Weyl's projective curvaturve temsor has
the decomposition

i rq
Win = 2" 64,

then the decomposed tensor field oy is recurvent with the same recurrence vector
Jfield as the tensor Wiy .

Differentiating equation (4.5) covariantly with respect to #! and using
the equations (1.15) and (4.1), we get

(4.11) E' o = Ly o + & opean -
Equations (1.16), (1.12), (4.7) and '(4.11) give the following:

THEOREM (4.4). If the recurrent Weyl's projective curvature tensor Wiy
has the decomposition (4.1) and the vector field &' is positively homogeneous
of degree zero in % then oy, is positively homogeneous of the first degree in .

We suppose that the Weyl’s projective curvature tensor Wi, is recur-
rent and bi-recurrent with the recurrent vector field X, and bi-recurrence
tensor field a,, and & = xi. Differentiating equation (4.1) covariantly with
respect to a™, using (1.21), we get

(4.12) Vin Git1 = My Oj -

Again, differentiating equation (4.12) covariantly with respect to x? and
using (1.22), we get

(4.13) Vo Vi 6k == Gpm Gt -
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Thus, we have

THEOREM (4.5). If the recurrent, bi-vecurrent Weyl's projective curvature
tensor has the decomposition

T 1
Win = 6 x

then the decomposed tensor freld o5y is recurrent and bi-recurrent with the recur-
rence vector field N, and bi-recurrvence tensor field a, which are also the recur-
rence vector field and bi-recurrence temsor field of Wiy .
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