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Equazioni funzionali. —- Asymptotic Behavior of Solutions of 
Nonlinear Functional Equations via Nonstandard Analysis. Nota di 
H aruo M urakami <*', S hin- ichi N akagiri <*> e Cheh- C hih Y eh <**>, 
presentata (***> dal Socio G. S a n so n e .

RIASSUNTO. — Gli Autori usano speciali tecniche per trovare alcune proprietà carat­
teristiche delle soluzioni delle equazioni

Lnx (/) +  &/(*, x I]gL (/)]' r - - , x [ g m (/)]) =  h (t) , S =  ±  I.

i. Introduction

Nonstandard analysis was introduced in oscillatory theory by Komkov 
and W aid [i] and Komkov [2]. Recently, the Authors [3] improved their 
results and gave some new criteria for the asymptotic behavior of solutions 
of the following ?z-th order differential equation with deviating arguments

x in) (t) +  0?) g  (pc (0] .• • -, * [gm (t)Y) =  h if) , S = ± I .

In this Note, we extend these results to the more general differential 
equation

E(S) L nx-(t) +  8f ( t , x  [gxf )] [gm (f)]) =  h(f)  . S =  -b I

by using nonstandard techniques, in the frame-work of Robinson’s theory 
[4, 5]. Here L w is an operator defined by

L 0 x  (f) =  'x  (t) , x  (t) =  - TT -rj L ^  x  (f) , rn (f) =  1,
r%\t) at

for i  — I , * • - , n.
Let R* denote the nonstandard extension of the real line R, which has 

the property that sentences formulated in language L are true in R* if and 
only if they are true in R (see [5]). We see that R is a subset of R* and R* 
also contains infinitesimal numbers and infinite numbers which are not in R. 
An infinite positive (resp. negative) number is a nonstandard number which 
is greater (resp. smaller) than any real number. We shall denote by R*oo and 
R*oo, respectively, the set of the infinite positive and negative numbers. The
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reciprocal of an infinite number is called an infinitesimal number. If x  is a 
real number, then we call x  a standard number of R*, otherwise it is called 
a nonstandard number. Let denote the set of the elements of R* which 
are bounded in absolute value by a standard number. If x  yy  are elements 
of R* such that x — y  is an infinitesimal, we shall say that x  is infinitely 
close to y  y and denote this by x  = 1 y .

For related results, we refer to Saito [6], Stroyan and Luxemburg [7]. 
Let I =  [t0 , 00) for some fixed t 0 >  o. Throughout this paper, we assume 

that the following two conditions always hold:
00

0 )  ri >g) , /«e C [I , R] , r it (t) >  o, r f (t) dt =  oo and lim gj (t) =  oo
J  t  T* OO
0̂

for i — I , • • •, n and j  =  1 , • • •, m.

(6) f e  C [I X R m, R ] .

We need the following four lemmas. The first is due to Robinson [4], 
and the others are due to Komkov and W aid [1].

00 2̂

LEMMA i. [ g  (f) àt converges i f  and only i f  j  g  (f) dt = 1o fo r  any

0̂ 1̂
/ i , / 2^R+oo ([4]) P- 75)*

Lemma 2. A standard function x(f)  , t e  I, is oscillatory i f  and only i f  
x  (t) , t £  R*, vanishes fo r  some t e R* ^  .

Lemma 3. A standard function x  (t) is unbounded i f  and only i f  
I x  if) I 6 R+oo fo r  some t e R* ^ .

t

Lemma 4. Let lim I g  (s) ds =  +  00 (— 00). Then fo r  any A e R*, A >  o
t —> 00 J 

to
(resp. <  o), and any t1> t0 , f e  R*, there exists t% G R*, t2 > tx , such that

I2
j g  00 >  A (resp. <  A). Moreover, fo r  any t% e , tt e R* (resp. R i» ) ,

ti

we have J  g  (f) dt  6 R+oo (resp. R -cc)*'

2. Main Results

Theorem i . Let

(Cx) /  ( t , JKi, • • •, yf) bz a nondecreasing function with respect to y i , y m

o < /  ( t , Vx, ■ ■ •, ym) <  — f  ( t , — yi y m)
and
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fo r  y  i >  o , i  =

( Q

and

(C3)

OO

j* A (7) converge,

«0

OOJI / O  ,c  • -t c )\à t =  oo
V

fo r  any nonzero constant c. Then every nonosdilatory solution of E ( i )  cannot 
be bounded away from  zero.

Proof. Assume, to the contrary, that there exists a solution x  (t) of E (i) 
such that x  (t) is bounded away from zero on I. W ithout loss of generality, 
we assume that x  (f) >  c >  o for some standard number c. Condition (a) 
implies that there exists a t1> t0 such that

* [gi 0)1 >  *

for t >  tx and i =  i , • • - , m. Hence, by (6) and (Q), we have

(0  f ( t , X  [gt (0] 0)]) >  /  0  . C , • • •, C)

for t '> t 1 and particularly for all / e R ^ ,  It follows from (C2) and 
Lemma I that

7)
h (t) d t = !  o

i

for any \  , Y] e R* ^  . Hence
7)

(2) j h (/) dt <  I .
?

By (1), (2) and the fundamental theorem of calculus
n

(3) x  (yj) =  Lw_x x  (£) -j- J  [h (f) f  ( t , x  [gì (t)] , • * •, x  [gm (7)])] d t
\ 7)

<  Ln_! AT (£) 4- I — j f ( t , C , - ’ - , c)àt -  
5

Regarding \  as fixed, by (C3) and Lemma 4, we can choose 73 so that
7]/»

J /  0 , * , • • •, <0 > [2 + L«-i * 0)] •
5

(4)
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From (3) and (4), we have

(5) L„_ 1 x  (y]) <  I

for all 73 satisfying (4). Since x  (t) is positive, (5) and (a) imply that x  (f) 
changes sign for some t G R * ^ . Therefore, by Lemma 2, x  (t) is oscillatory, 
a contradiction. This contradiction proves our theorem.

C o ro lla ry . Under the assumptions of Theorem j , every solution x  (f) 
of E (1) is oscillatory or such that lim inf \x (f) | ' =  o.

t —> 00
Example 1. The equation

(6) (t~lì2 x  (t))' +  4~3t~2 x  (/) — 4“1 t~dl2 — 2“11~2

satisfies the conditions (Q) and (C2), but does not satisfy (C3). This 
equation has a noposcillatory solution x  (f) =  t112 which is bounded away 
from zero.

Example 2. The differential equation 

(7) ( r J x ry  +  x  (t) =  e~2t (sin t — 3 cos t) +  sin t

satisfies all the conditions of Theorem 1. Hence every solution x (f) of (7) 
is oscillatory or such that lim inf | nr (/) | =  o. In fact, x  (t) — e~t s in t  is an

t —>■ 00
oscillatory solution of (7).

T heorem  2. Let (Qt), lim h (t) =  o and the following condition hold:
£-> 00

(Q) »• ••.j'm) = p i f )  F O i - ,y my

where p  (t) e C [I , (o , 00)]. I f

(C5) lim inf p  if) == c >  o ,
£->00

then every solution x  (f) of E (1) is oscillatory or such that lim x  (f) =  o.
t—> 00

Proof. Let x  (t) be a nonoscillatory solution of E (1). W ithout loss of 
generality, we assume that x  (t) >  o for all t G R* ^  , If x  [gì (/)] O for 
some /jGR+oo, i =  I , • • - , m, then, by (C*)

p eo F (x [gi (4)] (o]) ^o.
It follows from E (1) that L n x  (tp) <  o and Ln x (tP) o. We see that there 
must exist 4  G R * ^  , / 2 > such that

Lw x  (f) <  o and Ln x  (f) = x o
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for t >  t2. Otherwise Lwx  (f) is negative and bounded away from zero for 
/ > / l v  By the condition (a) , # (t ) must eventually become negative, a 
contradiction. But l^n x  (t) = x o for P > t2 implies

P 0) F & [gl CO]»” -»* [gm (*)]) =1 °  »

thus, by (C5),

F O  [gi 00] - ' ; -, x  [gm (/)]) — 

which implies x  [gi (t)] o, i.e. x  if) =  xo for t e R* co-

Example 3. The differential equation 

(8) (t (t (/* ')')')' -f t [x (log t)]* =  f  —  6 t2 +  7 t —  1) r «  — ß

satisfies every condition of Theorem 2. Hence, every solution x  (t) of (8) is 
oscillatory or tends to zero as t —> 00. In fact, x  (f) =. e~l is a nonoscillatory 
solution of (8) which tends to zero as t —► 00.

Example 4. From Example 1, we see that x (t) =  tll2> is an unbounded 
solution of (6). Here p  (f) =  4“1t~~2 does not satisfy the condition (C5).

Theorem 3. Let (C4) , (C5) and

(Q) lim h (t)
p( f )

-f- 00

hold. solution of E (8) A unbounded.

Proof. Assume, to the contrary, that there exists a solution x  If) of E (8) 
which is bounded. Then x  [gi(t)] is bounded for i =  1 ,* • - , m.  Since

(9) 2 *-1 L„ *  ( 0  >  -  SF (at [gi (/)] , - - , x [ g m ( / ) ] ) ,

L n x( t )  must be of positive sign for all t e  R*«,. If # f )  = x o for some 
tx e R* oo, then we have

(10) SF(*  [ft c o û ­ tai» (^1)]) * ( 0  
p  Or)

which, by (C6), .is an infinite positive number. Since-# is bounded for
i =  I ,• • - ,m,  the left hand side of (10) is bounded, a contradiction. If 
L n x  (f) o for all / g R ^ ,  it follows from (9) that L nx( f )  is an infinite 
positive number for all t e  R+oo* This and the condition (a) imply x  (f) is an 
infinite num ber for all t e  R * ^ , a contradiction. Thus the proof is complete.

Example 5. The equation 

( h )  ( t -1 (H *  x ’y y  + x ( t )  =  ^ 2 +  —  r *
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satisfies the conditions of Theorem 3. Thus, every solution of ( n )  is 
unbounded. In fact, this equation has an unbounded solution x  (f) ~  tl12.

Theorem 4. Let (Q) and  (C4) hold. I f  

(C7) lim inf p  ( / ) > £ >  o
£ - > 0 O

(C8) liminf > r >  0)
£-*oo P \f)

then no nonosdilatory solution of E (S) approaches zero as t -> 00.

Proof. We only prove the case E (1). Let x  (t) be a nonoscillatory 
solution of E (1) which approaches zero. Then there exists a f  >  t0 such 
that for all t >  f

F (x  [ g i '(*)] . • • • » * [gm OD <  4“1 r .

Since

2 r - i  L n x  (0 >  =  F (x [gt (0] , • • •, * [gm m  +  ~ | y

>  — 4“1 r  +  2“1 =  4 1 r >  o

for f > t 1}x( t )  is an infinite positive number for a contradiction.
This contradiction completes our proof.

Example 6. The equation 

(12) (e~l (er1 x' (t)ry  +  6 [x (V)]3 =  6 (1 +  .3 e~t +  3 e~2t)

satisfies the conditions of Theorem 4. Thus no nonoscillatory solution of (12) 
approaches zero as t -> 00. In fact, x(f )  =  1 ~f- e~l is a nonoscillatory solution 
of (12)1 which satisfies lim x  (t) =  1 7^0.

£—*00
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