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Equazioni funzionali. — Asympiotic Behavior of Solutions of
Nonlinear Functional Equations via Nonstandard Analysis. Nota di
Haruo Murakami @, SHiN—1cHI NAKAGIRI® e CuHEn-CHIH YEH ™,
presentata ¢ dal Socio G. SANSONE.

RIASSUNTO. — Gli Autori usano speciali tecniche per trovare alcune proprieta carat-
teristiche delle soluzioni delle equazioni
Loz @) +3f(,x[5,)], 2 [gn@OD) =4 , =41

1. INTRODUCTION

Nonstandard analysis was introduced in oscillatory theory by Komkov
and Waid [1] and Komkov [2]. Recently, the Authors [3] improved their
results and gave some new criteria for the asymptotic behavior of solutions
of the following #-th order differential equation with deviating arguments

206 432G x GO, 2 g OD=2@ , 3=x1.

In this Note, we extend these results to the more general differential
equation

EG@) Liax@®+¥¢x[a@l, - xlga@D=26 , =41

by using nonstandard techniques, in the frame-work of Robinson’s thedry
[4, 5]. Here L, is an operator defined by

I d

Lox () =% , Lgx(t)=71(7)3t—

Li——lx(t> ’ rn<l =1,

for i=1,-+-, . , ,
Let R* denote the nonstandard extension of the real line R, which has
the property that sentences formulated in language L are true in R* if and
only if they are true in R (see [5]). We see that R is a subset of R* and R*
also contains infinitesimal numbers and infinite numbers which are not in R.
An infinite positive (resp. negative) number is a nonstandard number which
is greater (resp. smaller) than any real number. We shall denote by R* . and
R* ., respectively, the set of the infinite positive and negative numbers. The
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reciprocal of an infinite number is called an infinitesimal number. If x is a
real number, then we call x a standard number of R¥*, otherwise it is called
a nonstandard number. Let Rj; denote the set of the elements of R* which
are bounded in absolute value by a standard number.. If x, y are elements
of R* such that x —y is an infinitesimal, we shall say that x is infinitely
close to y, and denote this by x =; .

For related results, we refer to Saito [6], Stroyan and Luxemburg [7].

Let I = [#,, o0) for some fixed #, > 0. Throughout this paper, we assume

that the following two conditions always hold:

(@) 7,,8;,2€C[I,R],»;(H)>o0, fri(z‘)dtzoo and lim g; (#) = oo
t—o00

to
for i=1,--,7m andj=I,--—,m.

(&) feC[IxR™R].
We need the following four lemmas. The first is due to Robinson [4],
and the others are due to Komkov and Waid [1].
S} ) (23

LEMMA 1. f g (&) Az converges if and only if f g @ dt =0 for any
h

to
fl"t2ERioo (l4], p. 79)-

LEMMA 2. A standard function x(¢),t€ 1, is oscillatory if and only if
x (), te R*, vanishes for some te R .

LEMMA 3. A standard jfunction x(t) s wunbounded if and only if
|x ()| € Rg for some te Rl
t
LEMMA 4. Zet lim (g (s) ds = + o0 (— o0). Then for any A€ R*, A > o0
t—>00.
to
(resp. < 0), and any ty > ty,t € R¥, there exists te R¥ t,> 4, such that
£
[g () dt > A (resp. <A). Moreover, for any t;€ Ry, 4, € R*,, (resp. R*,),
A ta o
we have fg () dze RY o, (resp. RE o)

t3
2. MaAIN REsULTS

THEOREM 1. Let

(C) Ft,yy--+, vm) be a nondecreasing function with respect 10 Yy, -+, Ym

and ‘
o <f(f’3/l:”',.'ym) S——f<t:—“yl>"f;—ym>
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for y;>o0,i=1,"-+,m,

€y [ % (2) de converge,
and ’
(€ f]f(z‘,c,---,c)]dz:oo

Jor any nonzero constant c. Then every nonoscillatory solution of E (1) cannot
be bounded away from zero.

Proof. Assume, to the contrary, that there exists a solution x (#) of E (1)
such that x (#) is bounded away from zero on I. Without loss of generality,
we assume that x (#) > ¢ > o for some standard number ¢. Condition (a)
implies that there exists a # > #, such that

x[gi(@D] > ¢
for t ># and 7 =1,.--,m. Hence, by (&) and (C,), we have
(1) AGEAV O] FERFE RV A O) ) = Y ITEEND

for #=4¢ and particularly for all ze R%,. It follows from (C,) and
Lemma 1 that

f/z(t)dz‘:lo

Y

12

for any £,7neR%,. Hence
0
(2) fh(t)dz<r.
g
By (1), (2) and the fundamental theorem of calculus

® L@ =Leax® + [BO—7C 2[5 O) 5 [ OD]
£

< Ly % (E) 4—1—ff(t,c,--~,c)dt.
£

Regarding £ as fixed, by (C;) and Lemma 4, we can choose 7 so that

n

~

(4) Jf(z‘,c,-~-,c)dt>[z + Ly x(®)].

€
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From (3) and (4), we have
) C Lyax(m <—1

for all v satisfying (4). Since x (¢) is positive, (5) and (&) imply that x @
changes sign for some #€ R%,,. Therefore, by Lemma 2, x (¥) is oscillatory,
a contradiction. This contradiction proves our theorem.

COROLLARY. Under the assumptions of Theorem I, every solution x ()
of E(1) is oscillatory or suck that liminf |x ()| = o.
t—>00

Example 1. The equation
6) (12 5 @) +4712x (@) = 47 1302 . 5=l y-2

satisfies the conditions (C,) and (C,), but does not satisfy (C;). This
equation has a nonoscillatory solution x () = #2 which is bounded away
from zero.

Example 2. The differential equation

) (e7tx")y +x(f) = ¢ (sint—3cos?) + e tsint

satisfies all the conditions of Theorem 1. Hence every solution x (¥) of (7)

is oscillatory or such that lim inf |x (#)| = 0. In fact, x (f) = e~tsin¢ is an
t—>o0 )

oscillatory solution of (7).

THEOREM 2. Let (Cy), lim 4 (¢) = 0 and the following condition hold:
t—>00

Cy f(t:.'yly"’sym)=ﬁ<t)F<y1»"',j’m)'
where p (£)eC[I, (0,00)]. If
(Cs) liminf p () =c¢> o0,

- I~>o0

then every solution x(f) of E (1) is oscillatory or such that lim x (f) = o.

t—>o00

Proof.  Let x (¢) be a nonoscillatory solution of E (1). Without loss of
generality, we assume that x () > o for all ze R% . If x[g;(9)] %0 for
some € Rl, i =1, -+, m, then, by (C)

‘ P ) F (v [g (t1>1 o X [&m (l‘l)]) F10.

It follows from E (1) that L, x (4) < o0 and L, x () 4, 0. We see that there
must exist 4, € R, ,%4 > #, such that

L,x(#) <o and L,x () =0
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for ¢t=1#,. Otherwise L, x (¥) is negative and bounded away from zero for
t>1#. By the condition (a),x (#) must eventually become negative, a
contradiction. - But L, x (#) =, 0 for #> #, implies

POF @& @], % [gn (O] =50,
thus, by (Cy),
Flen®],- -2 [gn @D =,

which implies x [g; ()] =, 0, i.e. x () = 0 for z€ Ri.

Example 3. The differential equation
(8 E@@ex))Y +tlx(dogt)P=F—62+7¢t—1)et— £

satisfies every condition of Theorem 2. Hence, every solution x (¢) of (8) is
oscillatory or tends to zero as z— oco. In fact, x (¢) = ¢! is a nonoscillatory
solution of (8) which tends to zero as # — co.

Example 4. From Example 1, we see that x (£) = A2 is an unbounded
solution of (6). Here p (#) = 471 #7% does not satisfy the condition (C;).
THEOREM 3. Let (C)), (Cy) and
. R(®
C lim —% =+ co
( 6> . oo 17(¢>
hold. Then every solution of E (8) is unbounded.

Proof. Assume, to the contrary, that there exists a solution x (¢) of E (3)
which is bounded. Then # [g;(#)] is bounded for 7 = 1,---, 7. Since

Lax@ _ 20

O A 1O R T()

—3F (& [& @), % [ew DD,
L, x () must be of positive sign for all teR%,. If L,x(4)=;0 for some

t, € R, then we have

_ k@)
(10) OF (x [g1 (W] -+ +» % [gm )] =2 OR
which, by (Cy), .is an infinite positive number. Since x [g;(¢)] is bounded for
i=1,-++,m, the left hand side of (10) is bounded, a contradiction. If
L,x () # 0 for all ze R’ it follows from (9) that L, x (¢) is an infinite
positive number for all z€ R’ . This and the condition (&) imply x (#) is an
infinite number for all € R’ ,, a contradiction. Thus the proof is complete.

Examplé 5. The equation

, 1 71t NP T
(11) @ @)Y () =08 4
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satisfies the conditions of Theorem 3. Thus, every solution of (r1) is
unbounded. In fact, this equation has an unbounded solution x () = A,

THEOREM 4. Let (C,) and (Cy) hold. If

(&5 : liminf p () ¢ >0
t—>o
) lim inf ﬁg’g >r>o0,

then no nonoscillatory solution of E (8) approaches zero as t — oo,

Proof. We only prove the case E (1). Let x(¢) be a nonoscillatory
solution of E (1) which approaches zero. Then there exists a # > #, such
that for all #>#

Fle®], (g @D <4717

Since

A ()
§30)

L.x @)
@
>—4'r 2t =4"r>o0

2L, x (2) > =—F@[a@l, - 2[g.OD +—F

for #=# ,x (#) is an infinite positive number for z€ R, a contradiction.
This contradiction completes our proof.

Example 6. The equation
(12) (e @Y 6O =601+ 3t 4302

satisfies the conditions of Theorem 4. Thus no nonoscillatory solution of (12)
approaches zero as # — co. In fact, x(¢) =1 -} ¢~ is a nonoscillatory solution
of (12)" which satisfies lim x (£) = 1 # 0.

t—>o00
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