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Fisica matematica. — Newutron transport in a cylinder ®. Nota
di Luicr MaNGIAROTTI, presentata ¢ dal Corrisp. G. SEsTINI.

RIASSUNTO. — Attraverso un’analisi rigorosa del processo di diffusione di neutroni
in un cilindro indefinito, si perviene a risultati di notevole significato fisico.

The purpose of this Note is to provide a rigorous mathematical analysis
of the neutron transport problem in a homogeneous (infinite) cylinder with
isotropic scattering in the one-velocity approximation. Our approach will
be to use the integral equation for the neutron density (which using cylindrical
coordinates is independent of # and of ¢). In another paper (including also
the proofs omitted or only sketched here), we will consider the case, of more
relevant practical interest, in which the cylinder is surrounded by a reflector.

I. By making use of the optical unit « = ZR > o (Z > o is the total
macroscopic cross section for all processes of fission, scattering and absorption
in the cylinder and R is its radius), the stationary neutron density p, () must
satisfy the linear integral equation [1]

1
o @)= [Tt 7 0 o,
o
where
2T 400
T , o= (r2+7'2 274" cos p22)Y/2 do ds
@ 4 a(r,r):ocff 72+ 72 —27" cosq + 22 ?
[ —0

and ¢ (> 1) is the average number of secondary neutrons per collision.
If » £+, we easily see that

3 +r)To(r,7) = aKo(a|r —7']),
where K, is the modified Bessel function (of zero order) [2]. Hence we get
(4) Ty, 7)r <aKo(a|r—#}).

Since K, (#) ~ — In # for small #, from (4) it follows that we can define
(for any o > 0) a linear integral operator T,, whose kernel is just T, (»,7") 7,
acting on the space C (0, 1). Here C (0, 1) is the space of all real valued
functions defined and continuous on [0, 1] endowed with the sup norm. It
turns out that T, is completely continuous (see [3], p. 162). Moreover, a simple

(*) Lavoro eseguito nell’ambito del Gruppo Nazionale per la Fisica Matematica del
C.N.R.

(**) Nella seduta del 14 maggio 1977.
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computation shows also that T, depends continuously on «€ (o, -} o),
that is, if 8 —a then ||Tg— Tl —o.

2. Let us now introduce the symmetric kernel
(5) Sa (7, 7y = Yrr" To(r, 7).
From (3) it follows that

(6) Sa(r,r’)S%Ko(oc[r—r’])

and hence we can define (for any « > 0) a linear integral operator S,, whose
kernel is just S, (7, 7"), acting on the Lebesgue space L2 (0, 1). Note that the
kernel S, (»,#") is square integrable on [0, 1]X[o,1]. The operator S, is
symmetric and completely continuous. We have:

LemMmA 1. (i) S, depends continuously on o, that is, if B — o then
1Se — Sall —o.
(i) S, 7s positive definite for any o > o.
(ili) Sg— S, s posttive definite if B > a.
1

1
Proof. The point (i) is a consequence of the continuity of ’ f Sa (7,7 dr ¥’

00
with respect to the parameter o. Clearly this follows from the Lebesgue’s

dominated convergence theorem by recalling (6).
To prove (ii) and (iii), the crucial point is the following integral repre-
sentation of T, (»,7"), that is
400
) T,(r,7)=« ’.tan—1 (tlay Jo (2) Jo (' £) de,

0

where J, is the Bessel function (of zero order) [2]. A proof of (7) will not be
given here. From (7) and (5), we get
+00
8 Cuf )=« ftan—l(z‘/a) F2(t)dr , fel?(o,1),
, ;

where F is the Hankel transform of #, that is
. 1
1)) F @) = (V;f(r) Jo Gty dr, >0
0

The change in the order of integrations in (8) can be justified by means of the
Lebesgue’s dominated convergence theorem Clearly, (ii) and (iii) follow now
from (8).
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3. As is well known [4], S, has an infinite set of positive eigenvalues
forming a sequence A (&) =%, () =--- converging to zero (zero is not an
eigenvalue) and each eigenvalue is of finite multiplicity. The two following
arguments show that the eigenfunctions of S, are continuous. Indeed, from
the inequality (6) we get

1 +c0
2
(10) fsi(r,r')dr'g%ng(a|r—_r'|)dr':n2a/4,
0 Loo

for any ¢ [o, 1] hand hence S, maps L% (0, 1) into its subspace of bounded
functions. Moreover, S, maps this subspace into that of continuous functions

(see [3], p- 164). Then the result follows. Now, let ¢, be an eigenfunction
of S,. Since

1
lim f Sy (7, 7") g () '
0

>0+ Vr

exists and is finite, clearly the operators T, and S, both lead to the same
eigenvalue problem.

4. In the following theorem we give some significant properties of the
eigenvalues 2, (&).

THEOREM 2. (i) The eigenvalue \, (&) is a continuous and strictly increasing
Junction of o, n>1.
(1) We have o < ¥, (@) < 1 and imAr, (0) =0 ,n > 1.
o->04
(iii) The jfirst eigenvalue N, (o) is simple and lim I (&) = I.
o ~> 400
Proof. The continuity of A, («) follows from the well known inequality
A (B) — 2 ()| < ||Sg—S,|| and from point (i) of the Lemma 1. Moreover,
from point (iii) of this Lemma we get A, () > A, («) if B> a since then
Sg — S, is positive definite (see [4], p. 239). ,
To prove (ii), note that from the relation between the Hankel transform
(9) and the two-dimensional Fourier transform and from the Plancherel theo-
rem, we deduce that the function Yz F (¢),#>= o0, belongs to L?(o, -+ o)
and that its riorm is equal to || f]|.. Hence from (8) we get

+00
Suff) < f M@ de=|lfIt,  fel(o, 1),

and so ||S,|| < 1. On the other hand, from (10) it follows that ||S,l| <= VE/Z

and so lim XA (@) = o.
o->01+

Coming now to (iii), that A, («) is simple follows at once from the well
known Jentsch’s theorem since S, (»,#") is positive in [o, 1]X [0, 1],. see
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(2) and (5). Note that we may choose an eigenfunction corresponding to A («)
such that is > o0 in [0, 1]. Finally, let /() = y27,7€ [0, 1]. Then feL?
1

(0, 1),|Ifll=1 and from (9) we get F (#) = y2 ], (/¢ since fr]o (rH) dr =
= Jy (®)/t (see [5], p. 22). Now, from the maximum propertyO of A () and
from (8) we have

+00

2 f 2 tant (Ha) J2 () de < A (@) < 1.
+00

Hence, lim 2, (&) =1 since {t—ljf (©)dr = 1/2 (see [2], p- 403).
a—> +60 J
1}

5. The main results concerning the solution of the integral equation
(1) are summarized in the following theorem.

THEOREM 3. (i) For amy o > O there is ome and only ome critical value
c (&) > 1 and one and only one neutron density p, € C (0, 1) suck that o, (#) > 0
m [O, I] ’ H Ptx“ = 1.

(ii) The critical value ¢ (o) is a continuous and strictly decreasing

Junction of a. Moreover, lim ¢ (x) =+ oo and lim ¢ (a) =1.
o0—>04 a—> 400

(iil) The neutron dewnsity p,€C (0, 1) depends continuously on «, that
is, if B—a then |pp — pall —o-

Proof. Points (i) and (ii) follow from Theorem 2. Since ¢ (&) = 1/A; (w).
Point (iii) can be proved by taking into account that T, is a completely con-
tinuous operator which depends continuously on « and that %, («) is simple
(for more details see [5]).

To conclude, let us observe how all properties of the solution have a rele-
vant physical meaning. Of particular interest are those of the critical value
¢ (&). Note also that p, () is a continuous function in (o, + o)X [o, 1].
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