Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Vittorio Cantoni

Intrinsic geometry of the quantum-mechanical "phase space", hamiltonian systems and Correspondence Principle

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 62 (1977), n.5, p. 628-636.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1977_8_62_5_628_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Fisica matematica. - Intrinsic geometry of the quantum-mechanical "phase space", hamiltonian systems and Correspondence Principle. Nota di Vittorio Cantoni, presentata ${ }^{*}$) dal Socio C. Cattaneo.

Abstract

RiASSunto. - Si mette in evidenza un'analogia strutturale fra lo spazio delle fasi della meccanica classica e lo spazio proiettivo hilbertiano della meccanica quantistica, analogia che consente di definire, per i valori medi delle osservabili quantistiche, parentesi di Poisson che risultano coerenti con le abituali relazioni di commutazione degli operatori associati. In base ad una formulazione precisa del principio di corrispondenza, data nel contesto dello schema di Mackey per la descrizione di un sistema fisico del tipo più generale, si è poi condotti ad un chiarimento del rapporto fra meccanica classica e meccanica quantistica che elimina, fra l'altro, il carattere puramente formale della corrispondenza fra parentesi di Poisson classiche e commutatori quantistici.

I. Introduction.

From the usual formulation of quantum mechanics, in which the pure states of a physical system are represented in Hilbert space by vectors determined $u p$ to a complex factor, it is possible, in principle, to derive an equivalent "projective formulation" in which the states are represented one-to-one on the projective space \tilde{H} associated with the Hilbert space H of the theory. Though the cost for such an elimination of the redundancy is the loss of the linear structure, which would presumably make the projective formulation unhandy for actual calculations, the analysis of the intrinsic geometry of \tilde{H}, regarded as a real (finite or infinite-dimensional) manifold, sheds light on striking analogies with the phase-space Φ of a classical system, and suggests an extension of the scheme which gives rise to a common setting for the classical and the quantum theory.

In part I it is shown that, just like the classical phase-space, on account of the complex structure of H the quantum-mechanical "phase-space" \tilde{H} has even dimension whenever it is finite-dimensional, and possesses an intrinsic skew-symmetric tensor field $\boldsymbol{\eta}$ (together with a riemannian metric which is degenerate in the classical case).

If A and B are generic observables, represented in H by the hermitian operators \mathbf{A} and \mathbf{B}, then their mean values $\hat{\mathrm{A}}$ and $\hat{\mathrm{B}}$, which are well-defined as functions on \tilde{H} and directly determinable by experiment without reference to the underlying Hilbert space, have Poisson-brackets $[\hat{A}, \hat{B}]$ with respect to the skew-tensor η exactly equal of the mean value \hat{C} of the observable associated with the hermitian operator $\mathrm{C}=-2 i(\mathrm{AB}-\mathrm{BA})$.

[^0]In part II the Correspondence Principle is precisely formulated in the context of Mackey's general scheme for the description of a physical system. The geometric relation between quantum systems and their classical analogues is analysed, and the relation between classical Poisson-brackets and quantum commutators is explained in this broader framework.

We do not discuss here the connection between the present approach to the Correspondence Principle and other related topics such as the explicit determination of the commutation relations for specific fields $[6,7]$ or the link between classical and quantum mechanics in terms of deformation theory [8, 9].

I. The quantum-mechanical " phase-space" and Poisson-brackets

2. Geometric structure of the quantum-mechanical "phase-space".

Let $\omega \in \tilde{H}$ be an arbitrarily fixed state. Denote by ε_{0} one of the unit representatives of ω in H , and consider an orthonormal basis $\left\{\varepsilon_{0}, \varepsilon_{\mathrm{H}}\right\} \equiv$ $\equiv\left\{\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{3}, \cdots\right\}$ in H. Except for ε_{0}, the elements of the basis are labeled, for convenience, by odd positive integers only ${ }^{(1)}$. If $\mathrm{P} \in \tilde{\mathrm{H}}$ is any of the states whose unit representatives α in H satisfy the condition

$$
\begin{equation*}
\left\langle\alpha, \varepsilon_{0}\right\rangle>0, \tag{I}
\end{equation*}
$$

the arbitrary phase factor in the definition of α can be uniquely fixed by the condition that the component of index o be positive, so that the state has a well-determined representation

$$
\begin{equation*}
\alpha=x^{0} \varepsilon_{0}+\sum_{\mathbf{H}} \mathrm{X}^{\mathrm{H}} \varepsilon_{\mathrm{H}} \quad, \quad\left(x^{0}>0\right) \tag{2}
\end{equation*}
$$

Denote by U_{ω} the region of \tilde{H} constituted by all the states which satisfy condition (1): if \tilde{H} is regarded as a real manifold, the real part $x^{H}=\operatorname{Re} X^{H}$ and the imaginary part $x^{\mathrm{H}+1}=\operatorname{Im} \mathrm{X}^{\mathrm{H}}$ of the complex components of α constitute a system $\left\{x^{h}\right\} \mid \equiv\left\{x^{1}, x^{2}, \cdots\right\}$ of local coordinates in \tilde{H} with domain $\mathrm{U}_{\omega}{ }^{(1)}$. x^{0} is not an independent coordinate in U_{ω}, since

$$
\begin{equation*}
x^{0}=\left(\mathrm{I}-\sum_{\mathrm{H}} \overline{\mathrm{X}}^{\mathrm{H}} \mathrm{X}^{\mathrm{H}}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

If Q and R are states in U_{ω}, represented in H by the unit vectors $\beta \equiv y^{0} \varepsilon_{0}+\sum_{\mathrm{H}} \mathrm{Y}^{\mathrm{H}} \varepsilon_{\mathrm{H}}$ and $\gamma \equiv z^{0} \varepsilon_{0}+\sum_{\mathrm{H}} Z^{\mathrm{H}} \varepsilon_{\mathrm{H}}$ respectively, $\left(y^{0}>0, z^{0}>0\right)$, the connecting vectors $\mathbf{P Q}$ and $\mathbf{P R}$ have components $\mathrm{d} y^{0} \equiv y^{0}-x^{0}, \mathrm{~d} Y^{\mathrm{H}} \equiv$ $\equiv \mathrm{Y}^{\mathrm{H}}-\mathrm{X}^{\mathrm{H}}$ and $\mathrm{d} z^{0} \equiv z^{0}-x^{0}, \mathrm{~d} Z^{\mathrm{H}} \equiv \mathrm{Z}^{\mathrm{H}}-\mathrm{X}^{\mathrm{H}}$, and their scalar product in H is given by

$$
\begin{equation*}
\langle\mathbf{P Q}, \mathbf{P R}\rangle=\mathrm{d} y^{0} \mathrm{~d} z^{0}+\sum_{\mathbf{H}} \mathrm{d}^{\mathrm{H}} \mathrm{~d} Z^{\mathrm{H}} \tag{4}
\end{equation*}
$$

(I) H and all capital indices run over odd positive integers, from I to n if H is finitedimensional, from I to ∞ otherwise. h and all lower-case indices run over all positive integers, from 1 to $n+1$ or to ∞ according to the dimension of H.

If Q and R belong to a first-order neighbourhood of P, and the differentials $\mathrm{d} y^{0}, \mathrm{~d} z^{0}$ are expressed in terms of the independent coordinates $\left\{x^{h}\right\}$ in U_{ω}, the expression (4) transforms into the bilinear form

$$
\begin{align*}
\sum_{h, k}\left(\delta_{h k}+\frac{x^{h} x^{k}}{\left(x^{0}\right)^{2}}\right) \mathrm{d} y^{h} \mathrm{~d} z^{k} & +i \sum_{\mathrm{H}}\left(\mathrm{~d} y^{\mathrm{H}} \mathrm{~d} z^{\mathrm{H}+1}-\mathrm{d} y^{\mathrm{H}+1} \mathrm{~d} z^{\mathrm{H}}\right) \equiv \tag{5}\\
& \equiv \sum_{h, k}\left(g_{h k}+i \eta_{h k}\right) \mathrm{d} y^{h} \mathrm{~d} z^{k}
\end{align*}
$$

At the point ω, the elements of the matrices $g_{h k}$ and $\eta_{h k}$ are the components of a symmetric tensor \boldsymbol{g} and a skew-symmetric tensor η, and it is easy to check that the matrices $g_{h^{\prime} k^{\prime}}^{\prime}$ and $\eta_{h^{\prime} k^{\prime}}^{\prime}$ which would have been obtained by performing the construction at the same point ω but in terms of a different basis $\left\{\varepsilon_{0^{\prime}}, \varepsilon_{\mathrm{H}^{\prime}}\right\}$ of H , (so that $\varepsilon_{0^{\prime}}=\exp (i \theta) \varepsilon_{0}, \varepsilon_{\mathrm{H}^{\prime}}=\mathrm{T}_{\mathrm{H}^{\prime}}^{\mathrm{K}} \varepsilon_{\mathrm{K}}$ with the matrix $\mathrm{T}_{\mathrm{H}^{\prime}}^{\mathrm{K}}$ unitary), coincide with the transformed components $g_{h^{\prime} k^{\prime}}$ and $\eta_{h^{\prime} k^{\prime}}$ of the tensors g and η under the coordinate transformation $\left\{x^{h}\right\} \rightarrow\left\{x^{h^{\prime}}\right\}$ in U_{ω}. Thus the riemannian metric g and the skew-field η are intrinsic geometric elements of \tilde{H}.

3. Poisson-brackets of the mean values.

Denote by A and B two observables, represented in H by the hermitian operators \mathbf{A} and \mathbf{B}, respectively. Set $\mathbf{C}=-2 i(\mathbf{A B}-\mathbf{B A})$. If $\hat{A}, \hat{\mathrm{~B}}$ and $\hat{\mathbf{C}}$ are the mean values of A, B and C , regarded as functions of the state on $\overline{\mathrm{H}}$, then

$$
\begin{equation*}
[\hat{\mathrm{A}}, \hat{\mathrm{~B}}]=\hat{\mathrm{C}}, \tag{6}
\end{equation*}
$$

where the square bracket denotes the Poisson-bracket in \tilde{H} with respect to the skew-field η.

In fact, at the generic point $\omega \in \tilde{H}$, in the local coordinates $\left\{x^{h}\right\}$, the skewtensor η has canonical form, so that the associated contravariant skew-tensor $\tilde{\eta}$ (defined by the conditions $\sum_{h} \tilde{\eta}^{h k} \eta_{k l}=\delta_{l}^{h}$) has the form:

$$
\tilde{\boldsymbol{\eta}}^{h k}=\left(\begin{array}{rrrr}
0 & -1 & 0 & \cdots \\
1 & 0 & -1 & \cdots \\
0 & 1 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

The Poisson bracket of any pair of functions f and h with respect to η is defined by the equation

$$
[f, h]=\sum_{h, k} \tilde{\eta}^{h, k} \frac{\partial f}{\partial x^{h}} \frac{\partial h}{\partial x^{k}} .
$$

In particular, if $\hat{\mathrm{A}}=\mathrm{A}_{\mathbf{0 0}}\left(x^{0}\right)^{2}+\Sigma\left(\mathrm{A}_{\mathbf{0 H}} \mathrm{X}^{\mathrm{H}}+\mathrm{A}_{\mathrm{H} 0} \overline{\mathrm{X}}^{\mathrm{H}}\right) x^{0}+\Sigma \mathrm{A}_{\mathrm{HK}} \overline{\mathrm{X}}^{\mathrm{H}} \mathrm{X}^{\mathrm{K}}=$ $=\mathrm{A}_{00}\left(x^{0}\right)^{2}+x^{0} \Sigma \mathrm{~A}_{0 \mathrm{H}}\left(x^{\mathrm{H}}+i x^{\mathrm{H}+1}\right)+x^{0} \Sigma \mathrm{~A}_{\mathrm{H}_{0}}\left(x^{\mathrm{H}}-i x^{\mathrm{H}+1}\right)+\Sigma \mathrm{A}_{\mathrm{HK}}\left(x^{\mathrm{H}}-\right.$ - ix $\left.x^{\mathrm{H}+1}\right)\left(x^{\mathrm{K}}+i x^{\mathrm{K}+1}\right)$, where $\mathrm{A}_{00}, \mathrm{~A}_{0 \mathrm{H}}, \mathrm{A}_{\mathrm{H}_{0}}$ and A_{HK} are the matrix elements
of the hermitian operator \mathbf{A}, and \hat{B}, \hat{C} are expressed in a similar way in terms of the corresponding matrix elements (according to the usual rule to compute the mean values), it is very easy to verify equation (6) at ω, and therefore on \tilde{H} since ω was chosen arbitrarily.

The above result will allow a geometric interpretation of the Correspondence Principle and lead to a natural link between classical Poisson-brackets and quantum commutators ${ }^{(2)}$.

II. The Correspondence Principle in Mackey's scheme

4. Interpretation of Mackey's scheme.

Consider a physical system $\Sigma=\{S, O, p\}$ described by the set S of its states, the set θ of its observables, and the function $p(\mathrm{~A}, \alpha, \mathrm{E})$ representing the probability that the measurement of the observable A on the state α give a result in the Borel set E of the real numbers R (Mackey, Ref. [2]). Physically we shall interpret the generic state α, considered at time t_{0}, as the result of well-specified modalities of "preparation" starting at time $t_{0}-\tau_{\alpha}$, where τ_{α} is a non-negative number representing the duration of the preparation process. Similarly we shall associate the generic observable A, considered at time t_{0}, with a well-defined " measurement" process starting at time $t_{0}+\tau_{\mathrm{A}}$, where τ_{A} can now also be negative or zero and depends on the measurement process under consideration.

Two states, even if associated with distinct modalities of preparation, must be identified if, in correspondence with any fixed measurement, they give rise to identical statistical distributions of the results. An analogous identification applies to the observables. This justifies the following axioms (Mackey, Ref. [2] p. 62):
$\left.I_{a}\right)$ if $p(\mathrm{~A}, \alpha, \mathrm{E})=p\left(\mathrm{~A}, \alpha^{\prime}, \mathrm{E}\right)$ for every A and E , then $\alpha=\alpha^{\prime}$;
$\left.I_{b}\right)$ if $p(A, \alpha, E)=p\left(A^{\prime}, \alpha, E\right)$ for every α and E, then $A=A^{\prime}$.
On account of the already mentioned interpretation of the functions p, it is also natural to require that the following conditions be satisfied:

$$
\text { II) } \begin{aligned}
& p(\mathrm{~A}, \alpha, \varphi)=0 ; p(\mathrm{~A}, \alpha, \mathrm{R})=\mathrm{I} ; p\left(\mathrm{~A}, \alpha, \mathrm{E}_{1} \cup \mathrm{E}_{2}\right)=p\left(\mathrm{~A}, \alpha, \mathrm{E}_{1}\right)+ \\
& +p\left(\mathrm{~A}, \alpha, \mathrm{E}_{2}\right) \text { whenewer } \mathrm{E}_{1} \cap \mathrm{E}_{2}=\varphi .
\end{aligned}
$$

It is understood that the preparation of any state and the measurement of any observable can be repeated as many times as one wishes, and the statistical distribution of the results, for a given observable A and a given
(2) A relation similar to (6) has been exhibited by Strocchi (reference [I]). However his quantum-mechanical "canonical coordinates" correspond to a "phase-space" which is just the underlying Hilbert space H, and is not in one-to-one correspondence with the physical states.
state α, does not depend on the particular instants $t_{0}^{\prime}, t_{0}^{\prime \prime}, t_{0}^{\prime \prime \prime}, \cdots$ at which preparation and measurement are repeated.

If, without changing the preparation of the state α at time t_{0}, the measurement process associated with A is modified by triggering it at time $t_{0}+t+\tau_{\mathrm{A}}$ (with $t \geq 0$) rather than $t_{0}+\tau_{\mathrm{A}}$, a nezv observable A_{t} is defined, which coincides with A if $t=\mathrm{o}$. The statistical distribution of the results of A_{t} on the state α depends in general on t, but is still independent of the instants $t_{0}^{\prime}, t_{0}^{\prime \prime}, \cdots$ at which the processes of preparation and measurement are repeated.

As t varies, the observables A_{t} constitute a one-parameter family which will be called the time evolution of A.

For any fixed state α and any fixed observable A, to every t there corresponds a well-determined statistical distribution $p\left(\mathrm{~A}_{t}, \alpha, \mathrm{E}\right)$, with an associated mean value $\hat{A}_{t}(\alpha)$. If, as we shall assume, the function $\hat{A}_{t}(\alpha)$ is differentiable with respect to t at the initial time $t=0$, the function $\dot{\hat{A}} \equiv\left(\frac{\partial \hat{\mathrm{~A}}_{t}(\alpha)}{\partial t}\right)_{t=0}$
is well-defined on S is well-defined on S.

In our considerations the question of mutual "compatibility " of distinct observables will never arise, since any single preparation process will always be thought as followed by a single measurement process, although, as already stressed, any given preparation-measurement pair can be repeated as many times as one wishes.
5. Classical and quantum systems.

We shall say that A is a classical observable if there exists a real function $\mathrm{A}(\alpha)$, the value of A on the state α, such that $p(\mathrm{~A}, \alpha, \mathrm{~A}(\alpha)) \equiv \mathrm{I}$. Obviously, in this case, $\hat{A}(\alpha)=A(\alpha)$, and by means of the measurement process of A_{t} for different values of t, one can define operationally a classical observable $\dot{\mathrm{A}}$ with value $\dot{\mathrm{A}}(\alpha)=\left(\frac{\partial \mathrm{A}_{t}(\alpha)}{\partial t}\right)_{t=0}$ such that $\hat{\mathrm{A}}=\dot{\mathrm{A}}$.

We shall say that $\Sigma=\{S, O, p\}$ is a classical system if all its observables are classical. If moreover O and p determine in S a differential structure and a symplectic form $\boldsymbol{\eta}$ in terms of which the equations of evolution can be expressed in canonical form, a classical system will be called hamiltonian.

On the other hand, we shall way that Σ is a quantum system if S and O can be put in correspondence, respectively, with the one-dimensional subspaces of a complex Hilbert space H and with the hermitian operators on H , in such a fashion that the function $p(\mathrm{~A}, \alpha, \mathrm{E})$ can be derived according to the usual rules of quantum mechanics.

Even for quantum systems, and for systems with a more general structure, the derivative $\dot{\hat{A}}$ of the mean value of any observable, if it exists, has a precise operational meaning: its determination can be described as a multiple experiment consisting in the measurement of $\mathrm{A}_{\boldsymbol{t}}$ for different values of the time t, repeated many times for each value of t. However it is not necessarily true that O contains an observable $\dot{\mathrm{A}}$ with mean value $\hat{\mathrm{A}}=\dot{\hat{\mathrm{A}}}$.

6. Classical correspondent and macroscopic analogue of a system.

On account of the above definitions and remarks, to the most general system $\Sigma=\{S, O, p\}$ one can associate a well-determined classical system $\Sigma_{c}=\left\{S_{c}, O_{c}, p_{c}\right\}$, which will be called the classical correspondent of Σ, characterized by the following conditions:
a) every state α of S has a correspondent α_{c} in S_{c}, and every element of S_{c} is the correspondent of at least one state of S;
b) every observable A of O has a correspondent A_{c} in O_{c}, and every element of O_{c} is the correspondent of at least one observable of O;
c) if α_{c} and A_{c} are correspondents of A and α, one has $p_{c}\left(\mathrm{~A}_{c}, \alpha_{c}\right.$, $\hat{\mathrm{A}}(\alpha))=\mathrm{I}$, i.e. the function $p_{c}\left(\mathrm{~A}_{c}, \beta_{c}, \mathrm{E}\right)$ has value i if $\hat{\mathrm{A}}(\alpha) \in \mathrm{E}$ and zero otherwise.

Loosely speaking we can therefore say that the system Σ_{c} is obtained from Σ by replacing each observable A with a classical observable A_{c} with value equal to the mean value of A, and by performing the identifications which might then be necessary in order to satisfy the conditions I_{a}) and I_{b}) of section 4.

On the other hand we shall say that a system $\Sigma_{m}=\left\{S_{m}, O_{m}, p_{m}\right\}$ is a macroscopic analogue of the generic system $\Sigma=\{S, O, p\}$ if Σ_{m} is a classical hamiltonian system, and if there exist a map σ of S on S_{m} and, for a subset O_{μ} of O, a one-to-one map ω of O_{μ} onto O_{m} such that $p_{m}(\omega(\mathrm{~A}), \sigma(\alpha), \hat{\mathrm{A}}(\alpha))=\mathrm{I}$. In this case, starting from Σ, one can construct a new system $\Sigma_{\mu}=\left\{S_{\mu}, O_{\mu}, p\right\}$, where S_{μ} is obtained from S by performing the identifications which might become necessary as a consequence of the exclusion of the observables of $O-O_{\mu}$. Σ_{μ} will be called the reduced system associated with Σ_{m}, and its classical correspondent will be denoted by $\Sigma_{\mu}^{*}=\left\{S_{\mu}^{*}, O_{\mu}^{*}, p^{*}\right\}$.

Notice that the classical correspondent of a system is always uniquely determined, but its definition does not imply that it necessarily be hamiltonian; while the latter condition is an essential part of the definition of a macroscopic analogue, whenever it exists. The notion of macroscopic analogue will allow us to clarify what is usually meant in Physics by "Correspondence Principle", a principle which involves on one hand a system (usually " microscopic") described by quantum mechanics, and on the other hand a system (indeed " macroscopic '") described by classical mechanics: any observable ${ }^{(3)}$ of the classical system has a quantum analogue, the converse being not necessarily true, and there might well be no direct operational relation between
(3) Notice that in our definition of a classical hamiltonian system it is not assumed that O_{m} contain as many observables as are the functions on the phase space S_{m}, but only sufficiently many in order that the differential and symplectic structures be operationally determined. For example, O_{m}, might just contain the observables associated with a particular set of canonical coordinates and their time evolutions.
the preparations of states or between the measurements of observables which are "analogous" in the two schemes. Actually the relation pertains to the correspondence (described by the map ω) between the evolution of the mean values of those observables which have a macroscopic analogue on one hand, and the evolution of the values of their macroscopic analogues on the other hand.

7. The Correspondence Principle.

Let us draw our attention on a quantum system $\Sigma_{q}=\left\{S_{q}, O_{q}, p_{q}\right\}$, and assume that it possesses a macroscopic analogue $\Sigma_{m}=\left\{S_{m}, O_{m}, p_{m}\right\}$. We shall keep denoting by ω the one-to-one map on O_{m} of the subset O_{μ} of O_{q} constituted by the observables of Σ_{q} which possess macroscopic analogues.

The commutators of the hermitian representatives of the observables of Σ_{q} gives rise to a composition law in O_{μ}, and an analogous law arises in O_{m} from the Poisson-brachets of the functions representing the observables of Σ_{m} on the phase-space S_{m}. The Correspondence Principle can be stated as follows:

If a quantum system $\Sigma_{q}=\left\{S_{q}, O_{q}, p_{q}\right\}$ has a macroscopic analogue $\Sigma_{m}=$ $=\left\{S_{m}, O_{m}, p_{m}\right\}$, the one-to-one correspondence relating the set O_{m} and the set O_{μ} of the observables of Σ_{q} endowed with a classical analogue is compatible with the composition laws which arise, in these sets, from the classical Pois-son-brackets and the quantum commutators, respectively.
We shall now use this precise formulation of the principle to get further insight in its content.

8. Geometric interpretation.

We shall say that two states α_{1} and α_{2} of S_{q} are "equivalent" if and only if $\hat{\mathrm{A}}_{\mu}\left(\alpha_{1}\right)=\hat{\mathrm{A}}_{\mu}\left(\alpha_{2}\right)$ for any observable A_{μ} of O_{μ}. The map σ of S_{q} on S_{m}, compatible with this equivalence relation, determines a one-to-one correspondence σ^{\prime} between the space S^{*} of the equivalence classes in S_{q} and the space S_{m}. Let us denote by A_{μ} the generic observable of O_{μ}, by α the generic state of S_{q}, by α^{*} the corresponding equivalence class: by means of the maps σ^{\prime} and ω one can identify Σ_{m} with the classical correspondent $\Sigma_{\mu}^{*}=\left\{S^{*}, O_{\mu}^{*}, p^{*}\right\}$ of Σ_{μ}, so that $p^{*}\left(\mathrm{~A}_{\mu}^{*}, \alpha^{*}, \mathrm{E}\right)=p_{m}\left(\omega\left(\mathrm{~A}_{\mu}\right), \sigma^{\prime}\left(\alpha^{*}\right), \mathrm{E}\right)$ or, equivalently, $p^{*}\left(\mathrm{~A}_{\mu}^{*}\right.$, $\left.\alpha^{*}, \hat{A}_{\mu}(\alpha)\right)=1$.

Let us introduce in the classical phase-space $S_{m} \equiv S^{*}$ an arbitrary system of local coordinates $x_{1}, x_{2}, \cdots, x_{2 n}$ in some neighbourhood of the point α^{*}. In S_{q} the equivalence class α^{*} is a subset of the projective Hilbert space \tilde{H} associated with the quantum-mechanical representation of Σ_{q}. If such a subset is a Hilbert submanifold of \tilde{H}, we can introduce in it a system of local coordinates y_{1}, y_{2}, \cdots defined in some neighbourhood of its generic point α. Setting $z_{h}=x_{h}, z_{2 n+h}=y_{h}$, in S_{q} the point α admits a neighbourhood U_{α} homeomorphic to the topological product of suitable neighbourhoods of α^{*} in S^{*} and of α in α^{*}, in which z_{1}, z_{2}, \cdots can be regarded as local coordinates.

As shown in part I, the quantum-mechanical structure of Σ_{q} determines in S_{q} a skew-symmetric tensor field η with respect to which the Poisson-bracket $\sum_{h, k} \eta^{h k} \frac{\partial \hat{\mathrm{~A}}}{\partial z^{h}} \frac{\partial \hat{\mathrm{~B}}}{\partial z^{h}}$ of the mean values of any pair of observables A and B of O_{q} coincides with the mean value of the observable represented by the hermitian operator $-2 i(\mathbf{A B}-\mathbf{B A})$, where \mathbf{A} and \mathbf{B} denote the hermitian representatives of A and B . If A and B belong to O_{μ}, their mean values only depend on the x-coordinates, and not on the y's, so that their associated Poisson-bracket is simply $\sum_{h, k}^{n_{1}^{n}} \eta^{h k} \frac{\partial \hat{\mathrm{~A}}}{\partial x^{k}} \frac{\partial \hat{\mathrm{~B}}}{\partial x^{k}}$ and gives rise, in the set O_{μ}^{*} of the classical system Σ^{*}, to a composition law determined by the skew-field $\boldsymbol{r}_{\ell}{ }^{*}$ with components $\eta^{h k}(h, k=, 2, \cdots, 2 n)$ in the local coordinates x of S^{*}. On the other hand S_{m}, as phase-space of a classical hamiltonian system, possesses itself a skewsymmetric tensor field $\boldsymbol{r}_{\boldsymbol{r}}$, and the correspondence principle states that $\boldsymbol{\eta}_{\boldsymbol{m}}$ and η^{*} correspond to each other in the identification of S_{m} with S^{*}.

In other words this amounts to realizing that whenever Σ_{q} admits a macroscopic analogue Σ_{m}, the classical correspondent Σ_{μ}^{*} of the reduced system Σ_{μ} associated with Σ_{m} (obtained from Σ_{q} by eliminating the observables which do not have a macroscopic analogue and by performing, if necessary, the appropriate identification of states) is hamiltonian and structurally identical with Σ_{m}.

9. Generalized hamiltonian systems.

Whether or not the classical correspondent Σ_{μ}^{*} of a reduced system $\Sigma_{\mu}=\left\{S_{\mu}, O_{\mu}, p\right\}$ of the generic system Σ is hamiltonian can be directly ascertained, operationally, even if it is not assumed that there exists a macroscopic system Σ_{m} structurally isomorphic with Σ_{μ}^{*}. In fact, once the subset O_{μ} of O which determines Σ_{μ} has been selected and the space S_{μ} of equivalence classes in S has been determined accordingly, it is sufficient to adopt, for the preparation of a given state α^{*} in α_{μ}^{*}, the procedure which pertains to any of its representatives α in S, and for the measurement of a given observable A_{μ}^{*} (the classical correspondent of $\mathrm{A}_{\mu} \in O_{\mu}$) the multiple experiment consisting in the repetition of the measurement of A_{μ} many times, followed by the averaging of the results.

The conclusions of part I imply that the classical correspondent of a quantum system as a whole is hamiltonian (with an infinite-dimensional phase-space, in general). The same is true, of course for any reduced system possessing itself a quantum-mechanical structure.

The hamiltonian character of the classical mechanical systems and of the classical correspondents of the quantum-mechanical ones suggests the characterization of a wider class of physical systems which includes both classical and quantum systems as special cases. Namely, we shall say that Σ is a generalized hamiltonian system whenever its classical correspondent is hamiltonian.

It has been shown in [3] and [5] that, for any system Σ whose space of states S can be regarded as a differential manifold, there is defined in S a symmetric tensor-field \boldsymbol{g} of degree 2 associated with a non-negative quadratic form. If moreover Σ is a generalized hamiltonian system, the hamiltonian character of its classical correspondent Σ_{c} determines a skew-symmetric tensor field $\boldsymbol{\eta}^{*}$ of degree 2 in the space δ^{*} of the classes of elements of δ with identical classical correspondents, via the identification of δ^{*} with the symplectic space δ_{c}.

Among the generalized hamiltonian systems, the classical systems are characterized by their identity with their classical correspondents, which implies the degenerate character of the symmetric field \boldsymbol{g}. The quantum systems are characterized by the following properties:
a) the quadratic form associated with \boldsymbol{g} is positive-definite;
b) S coincides with S^{*}, i.e. distinct states always have distinct classical correpondents;
c) the tensor fields \boldsymbol{g} and η constitute a projective Hilbert space structure on S (see Ref. [5]).

Condition b) is a consequence of that existence, for any state α of a quantum system, of an observable A_{α} (represented by the projection operator on the one-dimensional subspace associated with α in H) with mean value equal to I on α and less than I on every other state.

The content of condition c) can presumably be better understood by a further analysis of the relation, pointed out in Ref. [5], between the commutators of the gradients of the mean values of the observables and their Poisson-brackets, all concepts which make sense in the framework of generalized hamiltonian systems independently of the specific postulates of quantum mechanics. We hope to be able to develop this matter in a subsequent paper,

Riferimenti Bibliografici

[I] F. Strocchi (1966) - «Revs. mod. Phys. \#, 38, 36.
[2] G. W. Mackey (1963) - Mathematical Foundations of Quantum Mechanics (Benjamin).
[3] V. Cantoni (1975) - "Commun. Math. Phys.», 44, 125.
[4] V. Cantoni (1976) - "Commun. Math. Phys.", 50, 241.
[5] V. Cantoni (1977) - The Riemannian structure on the states of quantum-like systems (in corso di stampa su "Commun. Math. Phys.».
[6] J. Scwinger, «Phys. Rev.» 82, 914 (I95I); 9I, 713, 728 (1953).
[7] W. K. Burton and B. F. Touschek (1953) - "Phil. Mag.» 44, i69, 1880.
[8] F. J. Bloore, M. Assimakopoulos, I. R. Ghobrial (1976) - «J. Math. Phys.» 17, 1034.
[9] M. Flato, A. Lichnerowicz and D. Sternheimer (1976) - "J. Math. Phys.》, i7, 1754.

[^0]: (*) Nella seduta del 14 maggio 1977.

