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Fisica m atem atica. —  Quantization of a general system and 
application to the rigid sphere. Nota II (*> di B r u n o  C o r d a n i , pre
sentata <**> dal Socio D. G r a f f i .

RIASSUNTO. — In questa seconda Nota, utilizzando i risultati della precedente, dimo
striamo che il momento angolare di una sfera rigida è quantizzato secondo valori interi e 
semiinteri. Ricaviamo inoltre l’equazione di Pauli per spin qualsiasi. Dimostriamo infine 
che il i imite della Lagrangiana della equazione di Pauli per alti numeri quantici è la 
Lagrangiana classica di un fluido con vorticità.

3. Quantization  of th e  sph ere

As an application of the previous section, let us consider the rigid sphere 
with a moment of inertia I and fixed center, and indicate with a , ß , y the 
Euler angles (the choice of Euler angles is agreement with [1, p. 5] if we 
put: a =  <p1 , ß = & , Y  =  92)• The kinetic energy is

(3.1) T =  J  I (à2 +  ß2 -f y2 +  2 cos ß iy )  .

The Schrödinger equation for the steady states is

(3.2) —;—-—  ■ I sin ß —~
u  ; sin ß 3ß \  v aß +

+
' a2 ^ a2 ^

sin- aoc2 +  ■ay2
2 cos ß a2 <J/ 

aoc ay
P

+  7^  =  ° .

J — y2 IE being the angular momentum. We may write (3.2) in this form: 
J2 J2 ^ and therefore J is the operator of the total angular momentum. 
The eq. (3.2) is known in the theory of the Rotation Group as the equation of 
the Generalized Spherical Functions [1, p. 81]. The operator j 2 may be written 
as: j 2 =  ]i +  J2 +  Ja, the j^ s  being the operators of the projections of the 
angular momentum along the fixed axes: they are obtained from the classical 
expression through the usual replacement

(3-3) Pa
h 3 
i dot P3

h 3
T  ~3ß Py

h 3 
T  ~3y~ ’

and satisfy the commutation rules

(3-4) =  U > h t k ~  1 , 2 , 3 ) .

(*) Lavoro eseguito nell’ambito dell’attività dei Gruppi di ricerca matematici del
C.N.R.

(**) Nella seduta del 16 aprile 1977.
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For the integration of (3.2) it is necessary to establish the periodicity condi
tions; so let us introduce the Cayley-Klein parameters

(3-5)

v  ß a  +  TX3 =  cos — co s-------—
2 2

ß . a  +  yX.2 =  cos — sin

. ß _  a ~ YXo =  sin — cos

X 4 =  sin — sin

2

a — y

They satisfy the relations

4
I1(3-6) S i  XÎ =  I ; T =  2 I % X? ;

thanks to (3.6) the spheie is dynamically equivalent to a point constrained on 
the 3-dimensional sphere S3: but, for the half-angles in (3.5), the points at 
opposite ends of a diameter denote the same configuration. As is well known, 
in the integration of the Schrödinger equation of a point constrained on S2 
(i.e. the equation of the Spherical Functions [1, p. 41]) one requires the 
solutions to be continuous and single valued, i.e. have period 2 7t/K (K integer). 
If we require the solutions of (3.2) to be continuous and single valued on 
S3, we obtain, for the half-angles, that the period must be 4 7u/K (K integer).

Note that the source of this difference is topological: in fact the rotation 
group SO (3) is doubly connected while the S2 sphere (=S O  (3)/SO (2)) is sim
ply connected. We have an analogous thing in Classical Mechanics; the density 
D, defined in (2.14), for a point constrained on S2 is a function of sin2ff (ff being 
the colatitude) and so has period tu, while for the rigid sphere is a function 
of cos ß and so has period 2ru. But <];, being, roughly speaking, the square root 
of D, has therefore period 2 7u and 4 tc.

The solutions of (3.2) are [1, p. 85]

(3 • 7) T® (a , ß , y) =  e™  P® (cos ß)

/  I 3
I l  =  o , — , I , — •• -\m  sU =  /  , /  —̂ I  ----- /
\ 2 2

The total angular momentum is quantized: J — h ] / / ( /— 1) . Once /  is fixed, 
T®, a (2 /  + 'i )  X (2 / +  1) square matrix, provides an irreducible represen
tation with weight /  of the Rotation Group. The action of the operator ]k on 
a function T ^  transforms these in a linear combination of functions of the 
same representation. It is then possible introduce the square matrices (pŸ)mn 
with m  , n =  / ,  /  — 1 • • • — /  :

(3.8) jfcT® =  T® a®,

where the usual matrix product is understood. The matrices cr  ̂ satisfy 
the same commutation rules (3.4): they are thus the infinitesimal generators
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of the Rotation Group. As is known, all entries are null except the following 
ones

(3*9) 1 — ~  ~~ f  (J T  (J—  fit +  i)

=  ' (a2*)i»~i,in ~  — V (J  +  m )  ( J -- m  T" 0

=  m (m =  1 , 1 —  I • • • — /).

4. C h a rg ed  sp h e re  in  a n  e - m  f i e l d  (c la s s ic a l  case)

Let us consider a sphere with mass m> moment of inertia I and charge 
q imbedded in an e - m  field, that we suppose slowly variable on intervals 
that are comparable with the sphere dimensions. The classical Hamiltonian is

(4-0 h = -E -  (p —— aV + ?o + —  (j - k - 1 - b)!,
2 m \  c / 2 1 \ 2 me ]

P being the linear momentum and J the angular momentum. K takes into 
account a possible different distribution of matter and charge density and is 
equal to 1 if they coincide. The Hamiltonian (4.1) is quadratic and linear 
in momenta and is therefore quantizable by means of the described method : it 
is interesting nevertheless to examine the classical system. The total angular 
momentum is a constant of the motion since {H , J2} =  o. Moreover the 
Euler angle y does not appear in (4.1) and therefore the conjugate momentum 
is another constant of the motion. Having found two constants of the motion, 
it is possible to express the angular part of H as a function of one coordinate 
—co and its conjugate momentum since [2-3]

(4.2) £ = J s  ; — co =  — arctg ( L )  .

Neglecting thé terms in J2 and B2 the Hamiltonian becomes

(4 .3) H = —L_ f p - i - A Ì V ^ - K - l —
v y 2 m \  c J ^ 2 me

•(Bj cos co +  B2 sin co) +  £B3] .

From (4.3) we obtain an H JE  whose complete integral is of the type 
W (xk, t , co , oĉ ), the ocj/s being four integration constants. This W is defined 
in the configuration space of (x  , t , co) but it is possible to give an equi
valent description in which the configuration space is the usual space-time. 
This requires that, besides the W, also £ and co become some functions of 
space-time. Schiller [3] has given this: let us shortly summarize. Besides 
the ocp/s four other constants may be found by differentiating W:

, N 0 aw
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Choose one of these equations, say ß4 =  9W /9oc4 and solve it for the varia
ble co, co then becomes a function of (xk, t , oĉ  , ß4). From the equation 
\  — — (9W /9co) , \  m ay also be found as a function of these same variables. 
Put

(4* 5 )  (p ^  y  ̂ ^   ̂ » 0^  y  ß<l) y ^fx) : =  S  ( X k, t  , OCjj, , ß 4)  ,

and differentiate with respect to the time and the x's:

. . 9W  ̂ 9 co 9S 9W  ̂ 9 co 9S
'  dt ~  ** 'd t  dt 9 dXk~ ~   ̂'dX* dX*~ ’

The H JE  becomes

(4.7a) - g - + Ç  +  —  (vs +  W «  -  -f- a ) ‘ +  +  H .  =  o ,

where H ^  is the angular part of the Hamiltonian. To (4.7a) we can add 
the two Hamilton equations

(4.7b) P L  +  —  VÇ • ( v s  +  SVcû — ^  a )  =  i î îü L
'  dt m  \  * /  9 co

(4.7c) —  +  J L v w ( v S  +  £Vco — - t  a )  =  — ^ 4 ^ .
v ' dt m  \  C J

Introduce the determinant

(4.8) D =  det 9 / 9S . ~ 9 co \  II
dXi \  dOLk dOLk /  II 9

which satisfies the continuity equation 

(4-7d) i ^ .  +  V (D ») =  o

where (  VS +  £Vco ■— — A j .^  \ c J
The solutions of the four equations (4.7) make stationary the Lagrangian

density

(4-9) -% =  D [-§-■ +  * —  +  —  (v S  +  a YL 9/  9/ 2 m \  c J +

+  q<D _ K - i — B-jl.
2 ^  J

S , co , £ are the Clebsch parameters since they were introduced by him studying 
the fluid vorticity: the eqs. (4.7) describe therefore a vortical fluid [4, p. 248].
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See moreover the works of Schonberg [5] (where the Clebsch parameter are 
not yet tied with spin) and of Takabayasi-Vigier [6] (where their use is limited 
to the case: spin 1/2).

5. Pa u li equation  and  its classical l im it

To obtain the quantum  equation of a charged sphere in an e — m  field 
it is enough to perform the replacement

(5-0

in the classical Hamiltonian (4.1), since y a =  1. Usually one considers né
gligeable the terms in J2 and B2. So we obtain an equation in a 6-dimensional 
configuration space: it is physically more expressive to have an equation 
defined in the customary 3-dimensional space, utilizing the fact that we know 
the solution of the angular part. Putting.

(S-2) Xm(A a » ß >y) =  (*)-I

or shortly

(S-2') X =  T ®ÿ ,

and substituting in the wave equation, we obtain, for the (3.8),

<5-3) T<" I ( t v" f  A)’+»"■ - K
Since (5.3) must be identically satisfied for whatever value of the Euler 
angled, it is equivalent to Pauli equation for any spin. For 1 =  1/2 and 
K =  2 we have the electron equation. On account of what we have said on 
the classical limit of the quantum equations, the Pauli equation must have, 
as a limit for high quantum numbers, the classical equations of the vortical 
fluid, i.e. (4.7). Equivalently the quantum Lagrangian density

(S4) = TÏT (- T v++ -  T A++) ' ( t v+ -  f  A+) + + +
— k  A A -  <j,+ B-o® + — ih —  b + i L  _  -fT . d

2 me T T 2 V dt St T/

must have, as a limit, the classical Lagrangian (4.9). It is instructive to check 
it directly: it is then necessary to find the equivalent, in our case, of the 
replacement

(5-5) =  Re(</̂ )S.
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Having in mind the (3.7), we put
. / S  (x,t) \

(5.6) <\in (x , t) =  R (x , t) u ln (ß (x , t)) e V A ’ ),

where

(5-7) uln (ß) =  p® (cos ß) .

The position (5.6) means to look for an orthonormal triad, varying with place 
and time, so that spin is directed along the -s'-axis. Substituting (5.6) in 

we obtain e.g. for the first term

(5.8) h% V^+-V^ =  R2 H
VR \  ^  * ,

2 u n  u ln u ln +
+1R

~i - 1
+  (VS)2 2 n ufn uLn +  2% VS-Vco £ in nutn uln +

+1 +1
-I

+  / /  (V<o)2 n u i u ln +  fi' (Vß)2 2 n d U\n
+1

+2 \R
-t-

u ln AQ < u ln

+  ih Vß-VS

+  if?  Vß-Vco

!■(

-\-l \

* ^ uln
djdß

+T- dß dß

) +

+

dß

dß ' ^in " dß +

dUin * dUin
u ln ^jß u ln

àUln \1 
dß ) \

(5.8) may be greately simplified. Since the representation T^w is unitary, it 
follows that [1, p. 89]

-i
(5*9) ^Lin Uln Uln ~  1 '+2

The term Ew nufn uln is equal to the element of the first row and first column 
of the matrix (we drop for simplicity the index /)

(5.10) T (o , ß , o) g3T+ (o , ß , o) =  cos ßa3 +  sin ßc2

and therefore, taking into account (3.9),

-2
(5.I I) 2 « nU*»Uln =  /COS ß .

+ 2

(5.10) is a particular case of the more general relation

3

2
1

T ahT + =  2 4T t t (T*(5.12)
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T hk being the adjoint representation (i.e. the 3X3 representation)
[i. p. 95]
/ N dumn n ■— m  cos ß
(5*̂ 3) s7n~ß l,n>

where we have defined

(5 -H ) cm ~  i V  +  m) (J —  m - j -  I) ,

thanks to (5.9) and (5.11) we obtain

(5.15)

Since [1, p. 87]

(5.16)

%  (’+z \
dmIn
dß

I+  u ln
* d %ln \  _

, *'lmn ( - 0 "

we have on account of (5.13)

(5-17) uln
* dUin d u ln /  * I * n

V̂ mn ^m—l ,n 1 ^mndß
■u-In dß

Since the term n u ^n umn is equal to the element of the m-th 
m-th column of the matrix

(5.18) T (o , ß , o) <r3 cr3 T+ (o , ß , o) =  (Tc78 T+) (Ter3 T+) ,

from (5.10) and (3.9) we have

-i
(5*I9) 2 «  ^  u™n u-mn =  cos2 ß +  — sin2 ß [/ (/ +  i) — m2\ .

+1 2

From (5.13) and (5.19) we have 

(5.20)
+1" dß dß 2 

Since for high values of I 

(5-21) /  *  y / ( / +  O.

Ih is equal to total angular momentum, so that 

(5.22) Ih cos ß =  \  .

A t last we have

(5-23) / r  V++-V(Jj =  R2 j & +  (VS +  £Vco)2 +

+  —  ^  [(Vß)2 +  sin2 ß (Vco)2] [/ ( / + i ) — /2] J .

Since

o.

row and
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Obviously the classical limit is

(5 .24) h* D  (VS +  £Vcoj2.

Analogously we may complete the demonstration: It is easy
moreover to prove that the limit of the quantum density current

(5- s )  * - n r | . [ « ( T v - 7 A ) f c  +  * . ( - 4 — f * ) «

is the classical density current

(5.26) j  = B  —  (v S  +  £Vo> — a )m \  c /

in accordance with the previous definition of ».
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