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Geometria differenziale. — A Remark on the Tangent Bundle
T (M,) with g" over a Symmetric Riemann Manifold M,. Nota di
Tanjiro OxuBo, presentata ¢ dal Socio B. SEGRE.

R1AsSUNTO. — Designato con T (M,) il fascio tangente di una varietd riemanniana M,
dotato della metrica g™ di Sasaki-Muto, si dimostra che, dal fatto che M,, sia simmetrica nel
senso di E. Cartan, non segue in generale la simmetria di T (M,,).

INTRODUCTION

Some years ago K. Yano and the present author developed the tensor
calculus on the tangent bundle T (M,) over a Riemannian manifold M, by
endowing the so-called Sasaki-Muto metric g™, [6], and the paper was followed
by a trial of giving the geometrical significance to those functions, vector and
tensor fields explicitly by establishing the structural equations along the two
complementary distributions defined at each point of T (M,), [4]- In both
papers we showed that there does not exist in T (M,) a space of non-vanishing
constant curvature, and this implies specifically that T (M,) over a Rieman-
nian manifold M,, of non-vanishing constant curvature cannot be a space of
constant curvature. Then the question arises, when the base manifold M,
is symmetric in the sense of E. Cartan, if T (M,) must also be symmetric.

Since the curvature tensor of the Riemann connection VM with respect
to the metric g" have the sixteen components in each =1 {U (%)}, U (%)
being the local coordinate neighbourhood of M, (see § 1), the actual compu-
tation of taking the covariant differentiation of them with respect to V™ which
actually has the eight components I} is tremendously cumbersome and is
almost impossible. In this paper we present the following theorem on this
matter, without making this tedious work, which states:

THEOREM 1. Let M, be any Riemann manifold whick is symmetric in the
sense of E. Cartan. Then its tangent bundle T (M,) with g™ is in general not
symmetric.

§1 is a brief introduction of the structure of a tangent bundle with g",
and in § 2 we prove the theorem by using the results on symmetric space due
to A. Lichnerowicz [1] and K. Nomizu [2].

(*) Nella seduta dell’11 dicembre 1976.
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§1. TANGENT BUNDLE T(M,) OVER A RIEMANNIAN MANIFOLD M,
WITH THE METRIC g™

Let M, be a Riemann manifold covered by a system of coordinate
neighbourhoods {U ; (%)} @ and let V be its Riemannian connection. Then
V is given by

28(VxY,2) = Xg(Y,2) + Vg (X,2)—Zg(X, V) +£ (X, Y], D)+
+g(Z,X],Y) +£(X,[Z,YD

where g is the Riemann metric of M and X ,Y and Z are arbitrary vector
fields on M. It has in {U; ("} the local expression

j/zi: =325+ 2 gn— % £i0)
which is the Christoffel symbol, where g;; are the components of g in {U ; (x%)}
and 9; = 3fox?.

Let T (M,) be tangent bundle over M,. Denoting by 7 the projection
T (M,) - M, we introduce at each point x* (x%, y%) of =1 (U), the two com-
plementary distributions spanned by 8, = (3;, 8,41

<I> 812 =9;— Pi] It ) 8n+i = Opti = 9/93/1:’

where % ="+ are the components of a tangent vector defined at each
point 7 (x*) of the base manifold and T/ = :/Z: ¥ We call 3, the adapted
frame at z* in T(M,) and it has the components A,* = (A A, )

AiA == (Sf y T Ff) ) An+iA = (O s S"Jrih)

with respect to the natural base 34 = (3;, 9,;4) in #~(U) and §; is right inva-
riant by the action of any element of the structure group o (%) of T (M), [3]
The coframe 32° dual to the adapted frame given by (52", 84) 85 has the
expression

81 = A, di®
in =1 (U), where
AL A =5, AN A = 8
Ny=@®,0 A = (TG, 8

(1) We make the following convention for the indices:
The capital Roman letters A, B, C,--- and the small greek letters « , 8,y ,8,¢,---
run over the range 1,2,--+,%,# 4 1 ,-++, 27, and the small Roman letters @,4,¢,4d,
e, h,i,7,k,-++ over the range 1,2 ,+--, 7.
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From this we see that 3x® is composed of two parts
' =dxt , 8" =dyt 4 Tido

3, and §; are called the basis of the horizontal and vertical vectors at x* in
T (M,) respectively, and 3x* and 82"%% are called the basis of the horizontal
and vertical one-forms at #* in T (M,) respectively. The non-holonomic
object of these two distributions is given by

Qoo’ = — Qug" = A% (8 A — 3, AgY)
and for the various range of indices «,$ and vy, Qg," are found to be
jSwrh = jSn+h = szlh J’l,
'Qn—i-jih - Qin+jh = F?] )

all other Q’s are zero, where K,;* are the components in {U; (x))} of the

curvature tensor K of V given by
K(X,Y)Z = VXVYZ'—VY sz—-V[X’Y]Z.

We introduce in T (M,) the so-called Muto-Sasaki Riemann metric g™ defined
by [6]

di* = g d2’ d2' + g, 80 &',

and with ¢ we endow T (M,) with the unique Riemann connection V¥ given
by

2 (VR Y, Z) =X (Y, Z) + YSM(Z,X)—Zg (X, Y)
+ &M (X, Y],2)+ ¢ ([Z,X],V) + X, [Z,Y)

with respect to the natural base 9,, where X, Y and Z are arbitrary vector

fields in T (M,). Its components with respect to the adapted frame are
given by

Fiﬁ = % gaE <8Y gBE “f_ 8[3 gsa - 85 gaﬁ) + % <Q83a + QaYB + QGBY)
where
QEYB = gaS See QSYS:

and g,s are the components of g, that is,

(8ap) = [gﬁ ° ]

O g
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and g, £% = 5. For the various ranges of the indices, it turns out to be

A \ 4 nth R 1k k1 n+th
/Isz___?]' 2.2 R ’Iji —__%[(J”y , IWH—]L;_—%BJZ’LJ/ s |n+7.i_0,
) / \ 2 1T R
’I‘ji:O s lji—}]- ; , lﬁ_~o , |ﬁ_——0,

The curvature tensor KM of VM is defined in the adapted frame by, [4],
VMV MW — VMY W g
VGV — WU —Q(U, V)W =K"(U,V)W

where U,V and W are arbitrary vector fields in T (M,) and V¢V has in
©1 (U) the local expression

(2) VoV =U"@, VP + T2V 3,.
The components KM&;B of KM are given by
'Kyt = Ky + T Ko K, — Koo)' Kyig® — 2 Ko Kyt ¥y,
’Kn+kjih = % (v; Kkaih) ¥,
K nts = 3 (Vi Kjoih) ¥,
Kijnrd = — % (Vi Kigj* — V; K 3%,
'K,H.;? wiii = Ky + 1 (K. Kpi' — Ko Kip 59",

’ k__ 1 A1 i a,c b
Kintjnti = 3 Ky 1 cha Kwi ¥y,

' h__ 1 h 1 B e b
Kn+kn+jnl—i =2 Kifk I cha Yy,

’ nth __ Ve nth 1 2

Kij =0 , Ky " = 3 (Vs Kiie) »%,
' nthl__ 1w h_ L 3 a,c b
Kuwxji = 2 Knlc 4 Kjac Kisi ¥ Y,

’ nth 1 N 1 h a.c b
Kintii = 3 Kim + 1 Kkac Kjbi yy,

, n+h h o, 1 h a h b
Kkjn‘l-i = Kkji !_ 4 (Kkac Kib]' - Kjllc Kibka)y ’

+h n+h

+h ’ . A
=0, 'Kyik ntjnti

’ n4n__ / . nth_ ’ —
Kn+kn+j@ =0, Kn-l-kj'nﬂ =0 , Kanan =0.

M
Then the components K" = K™ % of the Ricci curvature tensor are found
to be

Kji = Ky — ¥ (K% Kapg + 2 K% Ky + Kol K230 55
Kppji = — 3 (V;Kei—V, K;) %,
Kjni =—3 ViKe—V,K;) 9,

’ __ 1 ca DY A ]
Kouvjnti = 7 K% Keani v° 5",



592 Lincel — Rend. Sc. fis. mat. e nat. — Vol. LXII — maggio 1977

from which we find that the scalar curvature [KY] = g* K, takes the
form

(3) K = K-— ’:_ chd Keabd .yc yb

where K;; and K are the components in {U ; (%)} of the Ricci curvature and
the scalar curvature of V in M,,.

§ 2. PROOF OF THE THEOREM
Let us suppose that T(M,,) is symmetric in the sense of E. Cartan, that is,
VM, Ksp® = 0.
Since VM is Riemannian, we have
Ve Ry =

and hence
4 VWK=35K=o0.

If we take % 47 for € and use (3), we have
(s) K* Kogpa ¥° =0

in virtue of the second of the operators defined by (1) and of the fact that
the components Kkjih of the curvature tensor of V on M, and the scalar cur-
vature K do not depend upon the ¥’'s Applying again 3,,; to (5), we have

(6) chd Ksabe =0,
and multiplying ¢” ¢®, we have
(7) Kkhji chhj’i = 0.

Because of (6), the scalar curvature K of T(Mn) given in (3) takes the form

-

K=K
and on taking 7 for ¢ in (4), we have 9; K = o, that is,
(8) K=a (a: const.).

(7) and (8) are the necessary conditions for a M, so that the tangent bundle
T (M,) with g may be a symmetric space.

We now assume that the base manifold M, is symmetric in the sense
of E. Cartan with respect to V too, that is,

©) Vi Kkjih =0.
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Then we have as above
(10) ViK;; =o,
and the equations

ho__ h s s ] s h s B
Hkﬁm — Kkjs Kim —Kkﬁ Ksm - Kkjp Kisq '—Kqu Kips =0

as the integrability condition of (9). Since we do not impose any topological
condition on M,, we suppose that M, is compact and orientable. For this
case A. Lichnerowicz [1] proved that if M, satisfies the conditions (10) and (11),
it must be symmetric in the sense of E. Cartan and for this case one gets

(12) K##h K iin = C (C: const.) @,

Generalizing this theorem, K. Namizu [2] proved that, if an irreducible
Riemann manifold M, (not necessarily compact and orientable) admits a
transitive group of motions whose linear isotropy group at any point contains
the homogeneous holonomy group at that point, the manifold M, is sym-
metric and (12) holds ®.  On the other hand, we cannot expect that the
constant C in (12) is always zero for any symmetric space. For example,
let M,,, > 2, be a non-flat Riemannian manifold of constant curvature, i.e.

Kijin = % (&wn &y — &xi &n) > (£ = const, £ 0);
the

Kt K psin = 2 2 n (n— 1) = const 7 0.

But, in order that T (M,) may be symmetric, we found in (7) that the
constant C in (12) should vanish all the time, which we cannot expect for
all the symmetric spaces M,’s, that is, the tangent bundle T (M,) with g™ over
a symmetric Riemann manifold M, has not necessarily to be a symmetric
space. Q.E.D.

Let us suppose that the base manifold M, is non-flat Kaehlerian with
the complex dimension 7 = 2 and that M, can be isometrically imbedded
in an (# + 1)-dimensional flat Kaehler space K,,; as an invariant hyper-
surface in the sense that the complex structure F of K., keeps the tangent
plane of the imbedded Kaehler manifold invariant at each point and the almost
complex f of the hypersurface induced from F coincides with the complex
structure of M,,. Then it has been proved by the present author [3] that, the
condition for M, to be the case, its curvature tensor of V should satisfy

(13) | KH# K, = K2, K <o

(2) See also, K. Yano [5], p. 223.
(3) See, K. Yano [5], p. 224.
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where K,;" are the components of the curvature tensor in the form of real
representation. Thus, taking account of (7), we can state

THEOREM 2. If M, #s a Kachlerian manifold and T (M,) with g is a
symmetric space, then M, cannot be isometrically imbedded in a flat Kaehler
space K,y as an invariant hypersurface unless it is locally far.

REFERENCES

[1] A. LICHNEROWICZ (1950) — Courbure, nombres de Betti et espaces symmetriques, « Proc.
Intern. Congress of Math.», 2, 216-223.

[2] K. NomI1zU (1957) ~ On infinitesimal holonomy and isotropy groups, « Nagoya Journ. of
Math.», 11, 111-114.

[3] T. OKUBO (1962) — On local imbedding of Kaehlerian manifold K2 in H2*2 «Yokohama
Math. Journal», 10, 25-42.

[4) T. OKUBO (1975) — Structure consideration of T (M,,) with gM over a Riemann manifold
M,, «Annali di Math.», 108, 258-279.

[5] K. YANO (1955) — The theory of Lie derivatives and its application, Amsterdam.

[6] K. YANO and T. ORUBO (1970) ~ On tangent bundles with Sasakian metrics of Finslerian
and Riemannian manifolds, « Annali di Mat. », 97, 137-162.



