ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

TANJIRO OKUBO

A Remark on the Tangent Bundle $T(M_n)$ with g^M over a Symmetric Riemann Manifold M_n

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.5, p. 588–594. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_62_5_588_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria differenziale. — A Remark on the Tangent Bundle $T(M_n)$ with g^M over a Symmetric Riemann Manifold M_n . Nota di Tanjiro Okubo, presentata (*) dal Socio B. Segre.

RIASSUNTO. — Designato con T (M_n) il fascio tangente di una varietà riemanniana M_n dotato della metrica g^M di Sasaki–Muto, si dimostra che, dal fatto che M_n sia simmetrica nel senso di E. Cartan, non segue in generale la simmetria di T (M_n) .

INTRODUCTION

Some years ago K. Yano and the present author developed the tensor calculus on the tangent bundle $T(M_n)$ over a Riemannian manifold M_n by endowing the so-called Sasaki-Muto metric g^M , [6], and the paper was followed by a trial of giving the geometrical significance to those functions, vector and tensor fields explicitly by establishing the structural equations along the two complementary distributions defined at each point of $T(M_n)$, [4]. In both papers we showed that there does not exist in $T(M_n)$ a space of non-vanishing constant curvature, and this implies specifically that $T(M_n)$ over a Riemannian manifold M_n of non-vanishing constant curvature cannot be a space of constant curvature. Then the question arises, when the base manifold M_n is symmetric in the sense of E. Cartan, if $T(M_n)$ must also be symmetric.

Since the curvature tensor of the Riemann connection $\nabla^{\mathbb{M}}$ with respect to the metric $g^{\mathbb{M}}$ have the sixteen components in each $\pi^{-1}\{U(x^i)\}$, $U(x^i)$ being the local coordinate neighbourhood of M_n (see § 1), the actual computation of taking the covariant differentiation of them with respect to $\nabla^{\mathbb{M}}$ which actually has the eight components $\Gamma^{\alpha}_{\gamma\beta}$ is tremendously cumbersome and is almost impossible. In this paper we present the following theorem on this matter, without making this tedious work, which states:

THEOREM 1. Let M_n be any Riemann manifold which is symmetric in the sense of E. Cartan. Then its tangent bundle $T(M_n)$ with g^M is in general not symmetric.

§ I is a brief introduction of the structure of a tangent bundle with g^{M} , and in § 2 we prove the theorem by using the results on symmetric space due to A. Lichnerowicz [I] and K. Nomizu [2].

^(*) Nella seduta dell'11 dicembre 1976.

§ 1. Tangent bundle $\mathrm{T}(\mathrm{M}_n)$ over a Riemannian manifold M_n with the metric g^{M}

Let M_n be a Riemann manifold covered by a system of coordinate neighbourhoods $\{U;(x^i)\}$ and let ∇ be its Riemannian connection. Then ∇ is given by

$$2g(\nabla_{X} Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) + g([X, Y], Z) + g([Z, X], Y) + g(X, [Z, Y])$$

where g is the Riemann metric of M and X, Y and Z are arbitrary vector fields on M. It has in $\{U; (x^i)\}$ the local expression

$$\left\langle egin{aligned} h \ j & i \end{aligned} \right| = rac{1}{2} \, g^{hk} \left(\partial_j \, g_{ki} + \partial_i \, g_{jk} - \partial_k \, g_{ji} \right),$$

which is the Christoffel symbol, where g_{ji} are the components of g in $\{U; (x^i)\}$ and $\partial_j = \partial/\partial x^j$.

Let $T(M_n)$ be tangent bundle over M_n . Denoting by π the projection $T(M_n) \to M_n$, we introduce at each point $x^A(x^i, y^i)$ of $\pi^{-1}(U)$, the two complementary distributions spanned by $\delta_{\alpha} = (\delta_i, \delta_{n+1})$:

(1)
$$\delta_i = \partial_i - \Gamma_i^{\ j} \ \partial_{n+1} \quad , \quad \delta_{n+i} = \partial_{n+i} = \partial/\partial y^i \ ,$$

where $y^i = x^{n+i}$ are the components of a tangent vector defined at each point $\pi(x^A)$ of the base manifold and $\Gamma_i{}^j = \frac{1}{|i|} \frac{j}{|i|} y^l$. We call δ_A the adapted frame at x^A in $T(M_n)$ and it has the components $\Lambda_a{}^A = (\Lambda_i{}^A, \Lambda_{n+i}{}^A)$;

$$\Lambda_i^{\,{}^{\Lambda}} = (\delta_i^\hbar\,, \cdots \Gamma_i^\hbar) \quad \, , \quad \, \Lambda_{n+i}^{\,\,{}^{\Lambda}} = ({}^{\mathrm{o}}\,,\,\delta_{n+i}^{\,\,\,\hbar})$$

with respect to the natural base $\partial_A = (\partial_i, \partial_{n+1})$ in $\pi^{-1}(U)$ and δ_i is right invariant by the action of any element of the structure group o(n) of T(M), [3] The coframe δx^B dual to the adapted frame given by $\langle \delta x^B, \delta_A \rangle \delta_B^A$ has the expression

$$\delta x^{\beta} = \Lambda^{\beta}_{A} \, \mathrm{d} x^{B}$$

in $\pi^{-1}(U)$, where

$$\begin{split} &\Lambda_{\alpha}^{\ \ A}\ \Lambda_{\ \ A}^{\beta} = \delta_{\alpha}^{\beta} &, \quad \Lambda_{\alpha}^{\ \ A}\ \Lambda_{\ \ B}^{\alpha} = \delta_{B}^{\ A}, \\ &\Lambda_{\ \ A}^{i} = (\delta_{\hbar}^{i}\,,\,\circ) &, \quad \Lambda_{\alpha}^{n+i}_{\ \ A} = (\Gamma_{\hbar}^{i}\,,\,\delta_{\hbar}^{i})\,. \end{split}$$

(I) We make the following convention for the indices:

The capital Roman letters A, B, C, \cdots and the small greek letters α , β , γ , δ , ε , \cdots run over the range 1, 2, \cdots , n, n+1, \cdots , 2 n, and the small Roman letters a, b, c, d, e, h, i, j, k, \cdots over the range 1, 2, \cdots , n.

From this we see that δx^{B} is composed of two parts

$$\delta x^i = \mathrm{d} x^i$$
 , $\delta x^{n+i} = \mathrm{d} y^i + \Gamma^i_i \, \mathrm{d} x^j$.

 δ_i and δ_i are called the basis of the horizontal and vertical vectors at x^A in $T(M_n)$ respectively, and δx^i and δx^{n+i} are called the basis of the horizontal and vertical one-forms at x^A in $T(M_n)$ respectively. The non-holonomic object of these two distributions is given by

$$\Omega_{\beta\alpha}{}^{\gamma} = -\Omega_{\alpha\beta}{}^{\gamma} = \Lambda^{\gamma}{}_{A} (\delta_{\beta} \Lambda_{\alpha}{}^{A} - \delta_{\alpha} \Lambda_{\beta}{}^{A})$$

and for the various range of indices $\alpha\,,\,\beta$ and $\gamma\,,\,\Omega_{\beta\alpha}{}^{\gamma}$ are found to be

$$\begin{split} &\Omega_{ji}^{\ n+h} = - \ \Omega_{ji}^{\ n+h} = - \ \mathbf{K}_{jil}^{\ h} \ \mathbf{y}^l, \\ &\Omega_{n+ji}^{\ h} = - \ \Omega_{in+j}^{\ h} = - \ \Gamma_{ij}^h, \end{split}$$

all other Ω 's are zero, where $K_{jil}^{\ \ h}$ are the components in $\{U;(x^i)\}$ of the curvature tensor K of ∇ given by

$$K\left(X\text{ , }Y\right)Z=\nabla_{X}\,\nabla_{Y}\,Z-\nabla_{Y}\,\nabla_{X}\,Z-\nabla_{[X,Y]}\,Z\;.$$

We introduce in $T(M_n)$ the so-called Muto-Sasaki Riemann metric g^M defined by [6]

$$\mathrm{d}\bar{s}^2 = g_{ji}\,\mathrm{d}x^j\,\mathrm{d}x^i + g_{ji}\,\delta y^i\,\delta y^i,$$

and with g^{M} we endow $T(M_n)$ with the unique Riemann connection ∇^{M} given by

$$2g^{M}(\nabla^{M}_{\mathbf{X}}\mathbf{Y},\mathbf{Z}) = \mathbf{X}g^{M}(\mathbf{Y},\mathbf{Z}) + \mathbf{Y}g^{M}(\mathbf{Z},\mathbf{X}) - \mathbf{Z}g(\mathbf{X},\mathbf{Y})$$
$$+ g^{M}([\mathbf{X},\mathbf{Y}],\mathbf{Z}) + g^{M}([\mathbf{Z},\mathbf{X}],\mathbf{Y}) + g^{M}(\mathbf{X},[\mathbf{Z},\mathbf{Y}])$$

with respect to the natural base ∂_A , where **X**, **Y** and **Z** are arbitrary vector fields in $T(M_n)$. Its components with respect to the adapted frame are given by

$$\Gamma^{\alpha}_{\gamma\beta} = \tfrac{1}{2} \, g^{\alpha\epsilon} \, (\delta_{\gamma} \, g_{\beta\epsilon} + \, \delta_{\beta} \, g_{\epsilon\alpha} - \, \delta_{\epsilon} \, g_{\alpha\beta}) + \tfrac{1}{2} \, (\Omega_{\delta\beta}{}^{\alpha} + \, \Omega^{\alpha}{}_{\gamma\beta} + \, \Omega^{\alpha}{}_{\beta\gamma})$$

where

$$\Omega^{\alpha}_{\ \gamma\beta} = g^{\alpha\delta} \, g_{\beta\epsilon} \, \Omega_{\delta\gamma}^{\ \epsilon},$$

and $g_{\alpha\beta}$ are the components of g^{M} , that is,

$$(g_{\alpha\beta}) = \begin{bmatrix} g_{ji} & 0 \\ 0 & g_{ji} \end{bmatrix}$$

and $g_{\alpha\beta} g^{\beta\gamma} = \delta^{\gamma}_{\beta}$. For the various ranges of the indices, it turns out to be

$$\begin{split} {}^{\prime}\Gamma^{h}_{ji} = & \left\langle \begin{array}{c} h \\ j \end{array} \right\rangle , \quad {}^{\prime}\Gamma^{n+h}_{ji} = -\frac{1}{2} \operatorname{K}_{jil}^{\ h} y^{l} , \quad {}^{\prime}\Gamma^{h}_{n+j \ i} = -\frac{1}{2} \operatorname{K}_{jli}^{\ h} y^{l} , \quad {}^{n+h}_{n+j \ i} = o , \\ {}^{\prime}\Gamma^{h}_{ji} = o , \quad {}^{\prime}\Gamma_{ji} = \left\langle \begin{array}{c} h \\ j \end{array} \right\rangle , \quad {}^{\prime}\Gamma^{h}_{ji} = o , \quad {}^{\prime}\Gamma^{h}_{ji} = o . \end{split}$$

The curvature tensor K^M of ∇^M is defined in the adapted frame by, [4],

$$\nabla_{\mathbf{U}}{}^{\mathrm{M}}\nabla_{\mathbf{V}}{}^{\mathrm{M}}\mathbf{W} - \nabla_{\mathbf{V}}{}^{\mathrm{M}}\nabla^{\mathrm{M}}{}_{\mathbf{U}}\mathbf{W} - \nabla^{\mathrm{M}}{}_{\mathbf{U}}\mathbf{W} - \nabla^{\mathrm{M}}{}_{\mathbf{U}}\mathbf{V} - \nabla^{\mathrm{M}}{}_{\mathbf{U}}\mathbf{U} - \Omega(\mathbf{U}, \mathbf{V})^{\mathbf{W}} = K^{\mathrm{M}}(\mathbf{U}, \mathbf{V})\mathbf{W}$$

where \mathbf{U} , \mathbf{V} and \mathbf{W} are arbitrary vector fields in $T(M_n)$ and $\nabla^{\mathbf{M}}_{\mathbf{U}}\mathbf{V}$ has in $\pi^{-1}(U)$ the local expression

(2)
$$\nabla_U^M V = U^{\alpha} \left(\delta_{\alpha} V^{\beta} + \Gamma_{\alpha \gamma}^{\beta} V^{\gamma} \right) \delta_{\beta}.$$

The components $\tilde{K}^{M}_{\delta\gamma\beta}$ of K^{M} are given by

$$\begin{split} {}^{'}\mathbf{K}_{kji}{}^{h} &= \mathbf{K}_{kji}{}^{h} + \frac{1}{4} \left(\mathbf{K}_{dck}{}^{h} \, \mathbf{K}_{jib}{}^{d} - \mathbf{K}_{dcj}{}^{h} \, \mathbf{K}_{kib}{}^{d} - 2 \, \mathbf{K}_{fci}{}^{h} \, \mathbf{K}_{kjb}{}^{f} \right) y^{b} \, y^{c} \, , \\ {}^{'}\mathbf{K}_{n+k \, ji}{}^{h} &= \frac{1}{2} \left(\nabla_{j} \, \mathbf{K}_{kai}{}^{h} \right) y^{a} \, , \\ {}^{'}\mathbf{K}_{k \, n+j \, i}{}^{h} &= -\frac{1}{2} \left(\nabla_{k} \, \mathbf{K}_{j0i}{}^{h} \right) y^{a} \, , \\ {}^{'}\mathbf{K}_{k \, j \, n+i}{}^{h} &= -\frac{1}{2} \left(\nabla_{k} \, \mathbf{K}_{iaj}{}^{h} - \nabla_{j} \, \mathbf{K}_{iak}{}^{h} \right) y^{a} \, , \\ {}^{'}\mathbf{K}_{n+k \, n+j \, i}{}^{h} &= \mathbf{K}_{kji}{}^{h} + \frac{1}{4} \left(\mathbf{K}_{kca}{}^{h} \, \mathbf{K}_{jbi}{}^{a} - \mathbf{K}_{jca}{}^{h} \, \mathbf{K}_{kbi}{}^{a} \right) y^{c} \, y^{b} \, , \\ {}^{'}\mathbf{K}_{n+k \, n+j \, n+i}{}^{h} &= \frac{1}{2} \, \mathbf{K}_{kij}{}^{h} - \frac{1}{4} \, \mathbf{K}_{jca}{}^{j} \, \mathbf{K}_{kbi}{}^{a} \, y^{c} \, y^{b} \, , \\ {}^{'}\mathbf{K}_{n+k \, n+j \, n+i}{}^{h} &= \frac{1}{2} \, \mathbf{K}_{ijk}{}^{h} - \frac{1}{4} \, \mathbf{K}_{jca}{}^{h} \, y^{c} \, y^{b} \, , \\ {}^{'}\mathbf{K}_{n+k \, n+j \, n+i}{}^{h} &= 0 \, , \quad \tilde{\mathbf{K}}_{n+kji}{}^{n+h} &= \frac{1}{2} \left(\nabla_{i} \, \mathbf{K}_{kja}{}^{h} \right) y^{a} \, , \\ {}^{'}\mathbf{K}_{n+k \, ji}{}^{n+h} &= 0 \, , \quad \tilde{\mathbf{K}}_{n+kji}{}^{n+h} &= \frac{1}{2} \, \mathbf{K}_{jik}{}^{h} - \frac{1}{4} \, \mathbf{K}_{jac}{}^{h} \, \mathbf{K}_{kbi}{}^{a} \, y^{c} \, y^{b} \, , \\ {}^{'}\mathbf{K}_{kn+j}{}^{n+h} &= \frac{1}{2} \, \mathbf{K}_{kji}{}^{h} + \frac{1}{4} \, \mathbf{K}_{kac}{}^{h} \, \mathbf{K}_{jbi}{}^{a} \, y^{c} \, y^{b} \, , \\ {}^{'}\mathbf{K}_{kjn+i}{}^{n+h} &= \mathbf{K}_{kji}{}^{h} + \frac{1}{4} \left(\mathbf{K}_{kac}{}^{h} \, \mathbf{K}_{jbi}{}^{a} \, y^{c} \, y^{b} \, , \\ {}^{'}\mathbf{K}_{n+k \, n+j}{}^{h}{}^{i+h} &= 0 \, , \, {}^{'}\mathbf{K}_{n+k \, jn+i}{}^{n+h} &= 0 \, , \, {}^{'}\mathbf{K}_{n+k \, n+j}{}^{n+h} &= 0 \, , \, {}^{'}\mathbf{K}_{n+k \, n+j}{}$$

Then the components $K^M_{\ \gamma\beta}=K^M_{\ \delta\gamma\beta}{}^\delta$ of the Ricci curvature tensor are found to be

$$\begin{split} {}^{\prime}\mathbf{K}_{ji} &= \mathbf{K}_{ji} - \tfrac{1}{4} \left(\mathbf{K}^{a}{}_{jc}{}^{d} \; \mathbf{K}_{aibd} + 2 \; \mathbf{K}^{a}{}_{ic} \; \mathbf{K}_{ajbd} + \mathbf{K}_{jac}{}^{d} \; \mathbf{K}^{a}{}_{ibd} \right) y^{c} \, y^{b} \; , \\ {}^{\prime}\mathbf{K}_{n+j \; i} &= - \tfrac{1}{2} \left(\nabla_{j} \; \mathbf{K}_{ai} - \nabla_{a} \; \mathbf{K}_{ji} \right) y^{a} \; , \\ {}^{\prime}\mathbf{K}_{j \; n+i} &= - \tfrac{1}{2} \left(\nabla_{i} \; \mathbf{K}_{aj} - \nabla_{a} \; \mathbf{K}_{ij} \right) y^{a} \; , \\ {}^{\prime}\mathbf{K}_{n+j \; n+i} &= \tfrac{1}{4} \; \mathbf{K}^{ca}_{\;\;\; cj} \; \mathbf{K}_{cabi} \; y^{c} \; y^{b} \; , \end{split}$$

from which we find that the scalar curvature $[K^M] = g^{\beta\alpha} K^M_{\beta\alpha}$ takes the form

(3)
$$\tilde{\mathbf{K}} = \mathbf{K} - \frac{1}{4} \, \mathbf{K}^{ea}_{c}^{d} \, \mathbf{K}_{eabd} \, y^c \, y^b$$

where K_{ji} and K are the components in $\{U; (x^i)\}$ of the Ricci curvature and the scalar curvature of ∇ in M_n .

§ 2. Proof of the theorem

Let us suppose that $T(M_n)$ is symmetric in the sense of E. Cartan, that is,

$$\nabla^{M}_{\epsilon}\,\vec{K}_{\delta\gamma\beta}^{\alpha}=\text{o}\,.$$

Since ∇^{M} is Riemannian, we have

$$\nabla^M_\epsilon \; \vec{K}_{\gamma\beta} = o$$

and hence

(4)
$$\nabla^{M}_{\epsilon} \tilde{K} = \delta_{\epsilon} \tilde{K} = 0.$$

If we take n+j for ε and use (3), we have

$$K_c^{ead} K_{eabd} y^c = 0$$

in virtue of the second of the operators defined by (I) and of the fact that the components $K_{kji}^{\ \ \ \ \ \ }$ of the curvature tensor of ∇ on M_n and the scalar curvature K do not depend upon the y's Applying again δ_{n+j} to (5), we have

(6)
$$K_{c}^{ead} K_{eabe} = 0,$$

and multiplying $g^{cb} g^{ed}$, we have

(7)
$$K^{khji} K_{khji} = o.$$

Because of (6), the scalar curvature K of $T(M_n)$ given in (3) takes the form

$$\mathbf{\tilde{K}} = \mathbf{K}$$

and on taking i for ε in (4), we have $\partial_i \mathbf{K} = \mathbf{0}$, that is,

(8)
$$K = a$$
 (a: const.).

(7) and (8) are the necessary conditions for a M_n so that the tangent bundle $T(M_n)$ with g^M may be a symmetric space.

We now assume that the base manifold M_n is symmetric in the sense of E. Cartan with respect to ∇ too, that is,

(9)
$$\nabla_l K_{kji}^{\quad h} = o.$$

Then we have as above

(10)
$$\nabla_l \mathbf{K}_{ii} = \mathbf{0} ,$$

and the equations

$$\mathbf{H}_{kjipq}^{h} = \mathbf{K}_{kjs}^{h} \, \mathbf{K}_{ipq}^{s} - \mathbf{K}_{kji}^{s} \, \mathbf{K}_{spq}^{h} - \mathbf{K}_{kjp}^{s} \, \mathbf{K}_{isq}^{h} - \mathbf{K}_{kjq}^{s} \, \mathbf{K}_{ips}^{h} = \mathbf{0}$$

as the integrability condition of (9). Since we do not impose any topological condition on M_n , we suppose that M_n is compact and orientable. For this case A. Lichnerowicz [1] proved that if M_n satisfies the conditions (10) and (11), it must be symmetric in the sense of E. Cartan and for this case one gets

(12)
$$K^{kjih} K_{kjih} = C (C: const.)$$
 (2).

Generalizing this theorem, K. Namizu [2] proved that, if an irreducible Riemann manifold M_n (not necessarily compact and orientable) admits a transitive group of motions whose linear isotropy group at any point contains the homogeneous holonomy group at that point, the manifold M_n is symmetric and (12) holds (3). On the other hand, we cannot expect that the constant C in (12) is always zero for any symmetric space. For example, let M_n , $n \ge 2$, be a non-flat Riemannian manifold of constant curvature, i.e.

$$\mathbf{K}_{kjih} = k \left(g_{kh} g_{ji} - g_{ki} g_{jh} \right), \qquad (k = \text{const}, \neq 0);$$

the

$$\mathbf{K}^{kjih} \, \mathbf{K}_{kjih} = 2 \; k^2 \, n \, (n-\mathbf{I}) = \mathrm{const} \neq \mathbf{0} \, .$$

But, in order that $T(M_n)$ may be symmetric, we found in (7) that the constant C in (12) should vanish all the time, which we cannot expect for all the symmetric spaces M_n 's, that is, the tangent bundle $T(M_n)$ with g^M over a symmetric Riemann manifold M_n has not necessarily to be a symmetric space. Q.E.D.

Let us suppose that the base manifold M_n is non-flat Kaehlerian with the complex dimension $n=2\,m$ and that M_n can be isometrically imbedded in an (n+1)-dimensional flat Kaehler space K_{n+1} as an invariant hypersurface in the sense that the complex structure F of K_{n+1} keeps the tangent plane of the imbedded Kaehler manifold invariant at each point and the almost complex f of the hypersurface induced from F coincides with the complex structure of M_n . Then it has been proved by the present author [3] that, the condition for M_n to be the case, its curvature tensor of ∇ should satisfy

$$\mathrm{K}^{kjih}\,\mathrm{K}_{kjih}=\mathrm{K}^{2}\,,\qquad \qquad \mathrm{K}<\mathrm{O}$$

⁽²⁾ See also, K. Yano [5], p. 223.

⁽³⁾ See, K. Yano [5], p. 224.

where $K_{kji}^{\ \ h}$ are the components of the curvature tensor in the form of real representation. Thus, taking account of (7), we can state

Theorem 2. If M_n is a Kaehlerian manifold and $T(M_n)$ with g^M is a symmetric space, then M_n cannot be isometrically imbedded in a flat Kaehler space K_{n+1} as an invariant hypersurface unless it is locally flat.

REFERENCES

- [1] A. LICHNEROWICZ (1950) Courbure, nombres de Betti et espaces symmetriques, « Proc. Intern. Congress of Math. », 2, 216-223.
- [2] K. NOMIZU (1957) On infinitesimal holonomy and isotropy groups, «Nagoya Journ. of Math. », 11, 111-114.
- [3] T. Okubo (1962) On local imbedding of Kaehlerian manifold K^{2n} in H^{2n+2} , «Yokohama Math. Journal», 10, 25–42.
- [4] T. OKUBO (1975) Structure consideration of $T(M_n)$ with g^M over a Riemann manifold M_n , «Annali di Math. », 108, 258–279.
- [5] K. YANO (1955) The theory of Lie derivatives and its application, Amsterdam.
- [6] K. YANO and T. OKUBO (1970) On tangent bundles with Sasakian metrics of Finslerian and Riemannian manifolds, «Annali di Mat. », 97, 137-162.