ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Carlo M. Scoppola

Su una classe di gruppi finiti

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.5, p. 579–583. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_62_5_579_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 14 maggio 1977
Presiede il Presidente della Classe Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Teoria dei gruppi. — Su una classe di gruppi finiti (*). Nota di Carlo M. Scoppola, presentata (**) dal Socio G. Scorza Dragoni.

SUMMARY. — A classification of the finite groups with quasi-normality as a transitive relation in every proper subgroup is given.

Sia G un gruppo finito. G si dirà un τ -gruppo se e solo se vale la seguente proprietà:

(τ) Se H \leq K \leq G, H è quasinormale (1) in K, K è quasinormale in G, allora H è quasinormale in G.

Scopo di questo lavoro è di dare una classificazione dei gruppi finiti i sottogruppi propri dei quali sono τ –gruppi. In tutto il seguito «gruppo» significherà sempre «gruppo finito».

- 1. In [6], Zacher ha studiato i τ-gruppi risolubili giungendo alla seguente caratterizzazione:
- I.I. TEOREMA. Un gruppo G è un τ -gruppo risolubile se e solo se G è supersolubile ed ha un sottogruppo N normale di Hall, abeliano di ordine dispari, tale che G/N è nilpotente modulare, e che gli elementi di G inducono su N automorfismi potenza, cioè automorfismi rispetto ai quali ogni sottogruppo di N è invariante.

In particolare, ne consegue che ogni sottogruppo di un τ -gruppo risolubile è un τ -gruppo, e che un gruppo nilpotente è un τ -gruppo se e solo se

^(*) Lavoro eseguito nell'ambito dei gruppi di ricerca in Matematica del CNR.

^(**) Nella seduta del 14 maggio 1977.

⁽¹⁾ Ricordiamo che un sottogruppo di un gruppo G si dice quasinormale in G se è permutabile con ogni sottogruppo di G.

^{39. -} RENDICONTI 1977, vol. LXII, fasc. 5.

è modulare. Osserviamo che se G è un gruppo in cui ogni sottogruppo è un τ -gruppo, G è risolubile, in virtù di [6, Cor. 1.6.] e di [3, VI Satz 9.6]. Se pertanto G stesso è un τ -gruppo, G soddisfa le condizioni del Teorema 1.1. Limiteremo quindi il nostro esame ai gruppi che non sono τ -gruppi, e in cui ogni sottogruppo proprio è un τ -gruppo. Tali gruppi saranno detti τ_1 -gruppi.

Enunciamo ancora un risultato che ci sarà utile in seguito, e che discende da [6, Cor. 1.6] e da [2, Hilfsatz C]:

- 1.2. TEOREMA. Se ogni sottogruppo di un gruppo G è un τ -gruppo, allora G ha una torre di Sylow di tipo <, ove < è l'ordinamento dei numeri primi opposto a quello naturale, oppure G è minimale non nilpotente.
- 2. Elenchiamo qui cinque classi di gruppi: mostreremo che si tratta di τ_1 -gruppi.
 - (i) I p-gruppi minimali non modulari.
- (ii) Le estensioni di un p-gruppo abeliano elementare P, ove $|P| = p^{\alpha}$, $\alpha > 1$ con un q-gruppo ciclico Q, $q \neq p$, tali che P è normale minimale in PQ, e Φ (Q) agisce come gruppo di automorfismi potenza su P.
- (iii) Le estensioni di un p-gruppo abeliano elementare P di ordine dispari, $P = P_1 \times P_2$, $|P_1| = |P_2| = p$, con un q-gruppo ciclico $Q = \langle y \rangle$, $q \neq p$, tali che $(x_1 x_2)^y = x_1^r x_2^s$ per ogni $x_1 \in P_1$, $x_2 \in P_2$ ove $r \not\equiv s$, e $r^q \equiv s^q \pmod{p}$.
- (iv) Il prodotto semidiretto e non diretto del gruppo \mathcal{Q} dei quaternioni di ordine 8 per un gruppo ciclico C d'ordine 3^{α} , $\alpha > 0$.
- (v) Posto D = $\langle x, y \mid x^{p^{\alpha}} = y^{p^{\beta}} = 1$, $[x, y] = x^{p^{\alpha-1}}$, $\alpha \ge 2$, $\beta \ge 1$, il prodotto semidiretto di D per un q-gruppo ciclico Q, $q \ne p$, tale che $Z(DQ) \cap Q = \Phi(Q)$, e Q normalizza ogni sottogruppo di D.

Osserviamo che, per I.I, un p-gruppo G è un τ_1 -gruppo se e solo se ogni suo sottogruppo proprio è modulare, e G stesso non lo è, cioè se e solo se il gruppo G è in (i). Tali gruppi sono studiati e caratterizzati in [4]. È chiaro che i gruppi in (ii) sono τ_1 -gruppi. Se G è in (iii), G non è un τ -gruppo; infatti $\langle x_1 x_2 \rangle^y = \langle x_1^r x_2^s \rangle \neq \langle x_1 x_2 \rangle$, poichè $r \not\equiv s \pmod{p}$; y non agisce allora come automorfismo potenza su P, per cui G non soddisfa le condizioni di I.I; è facile poi verificare che ogni sottogruppo proprio di G è un τ -gruppo, tenuto conto del fatto che $s^q \equiv r^q \pmod{p}$. Ogni sottogruppo proprio di un gruppo G in (iv) è nilpotente modulare, e quindi un τ -gruppo; ma G non soddisfa le condizioni di I.I, per cui non è un τ -gruppo. È banale infine che, se G è in (v), G è un τ_1 -gruppo.

Dedicheremo il prossimo paragrafo alla dimostrazione della parte necessaria del seguente:

2.1. TEOREMA. G è un τ_1 -gruppo se e solo se G appartiene a una delle classi $(i)\cdots(v)$.

- 3. Alla dimostrazione della necessità della 2.1 premetteremo un Lemma e una Proposizione.
- 3.1. Lemma. Sia G un τ_1 -gruppo, ma non un p-gruppo. Se G = HK, con $H \triangleleft G$, $e \mid H$, K nilpotenti di Hall, allora $\mid G \mid = \rho^{\alpha} q^{\beta}$.

Dimostrazione. Supponiamo che |G| sia divisibile per almeno 3 numeri primi distinti. Sia K_1 il prodotto diretto di K per il massimo sottogruppo di Hall di H che centralizza K, e H_1 il complemento normale di K_1 .

 H_1 è abeliano; infatti, se $P \in \operatorname{Syl}_p(H_1)^{(2)}$ e $Q \in \operatorname{Syl}_q(K_1)$, e Q non centralizza P, PQ è un τ -gruppo, poiché PQ < G; ma PQ non è nilpotente, e così per 1.1 P è abeliano; inoltre, Q agisce come gruppo di automorfismi potenza su P. In conclusione, K_1 agisce su H_1 come gruppo di automorfismi potenza; ma allora G è un τ -gruppo per 1.1, assurdo.

- 3.2. Proposizione. Sia G un τ_1 -gruppo, ma non un p-gruppo. Allora:
 - a) $|G| = p^{\alpha} q^{\beta}, p \neq q;$
 - b) Se $P \in Syl_p(G)$, $Q \in Syl_q(G)$, si ha che P è modulare e normale in G, e Q è ciclico.

Dimostrazione: a) Supponiamo che |G| sia divisibile per almeno 3 numeri primi distinti. Sia $P \in \operatorname{Syl}_p(G)$, ove p è il più piccolo primo che divide |G|; e, a norma di 1.2, sia K il suo complemento normale. K è un τ -gruppo, ma non può essere nilpotente, per 3.1; sia allora $\{1\} \neq N \triangleleft K$, quale considerato in 1.1, e C un complemento di N in G: G = NC. Di nuovo per 3.1, il τ -gruppo C non sarà nilpotente: per 1.1, sarà $C = N_1 C_1$, $N_1 \triangleleft C$, N_1 abeliano e di Hall, per cui $G = NN_1 C_1$. Sia ora $S \in \operatorname{Syl}_s(N_1)$, tale che S non centralizza nè N nè C_1 ; tale sottogruppo esiste certamente, poiché altrimenti G = AB, ove A è il prodotto dei sottogruppi di Sylow di N_1 che centralizzano N, e S il prodotto di quelli che centralizzano S, is perverrebbe così di nuovo ad un assurdo, in virtù di 3.1. Esiste pertanto un $x \in S$, tale che $x \notin C_S(N)$, $x \notin C_S(C_1)$; esisteranno allora $R \subseteq N$, $T \subseteq C_1$, R, T ciclici di ordini rispettivamente r^k e t^k , con r e t numeri primi, tali che t0 non centralizza nè t1, t2. It quale consideratione. Ma allora per t3, t4, t5, t6 un gruppo ma non non un t7-gruppo (1.1), per cui t7, t8. Ma allora per t8, t9, t9,

b) Per 1.2, esiste un primo p tale che se $P \in \operatorname{Syl}_p(G)$, $P \triangleleft G$. Se poi P è abeliano, esiste $x \in Q$, $Q \in \operatorname{Syl}_q(G)$, tale che x non agisce come automorfismo potenza su P, altrimenti G sarebbe un τ -gruppo, per 1.1; allora P(x) = G e $Q = \langle x \rangle$ è ciclico. Se P non è abeliano, esiste $x \in Q$ tale che x non centralizza P, altrimenti G è nilpotente, e quindi τ -gruppo; ma allora, di nuovo, deve essere $\langle x \rangle = Q$, per 1.1.

Passiamo alla dimostrazione della necessità del Teorema 2.1.

Se G è un p-gruppo, esso appartiene ad (i). Sia pertanto G un τ_1 -gruppo, ma non un p-gruppo; G avrà allora la struttura descritta in 3.2:

⁽²⁾ Con la notazione $\operatorname{Syl}_p(G)$ si indicherà l'insieme dei p-sottogruppi di Sylow di G.

G = PQ, $\{I\} \neq P \in Syl_p(G)$, $\{I\} \neq Q \in Syl_q(G)$, $p \neq q$, $P \triangleleft G$, Q ciclico, P modulare.

a) Se in G il gruppo P è abeliano, allora G appartiene a una delle classi descritte in (ii), (iii).

Supponiamo, per cominciare, che sia p=2. Allora, per 1.2, G è minimale non nilpotente, e dunque addirittura minimale non abeliano. Pertanto G è in (ii).

Sia dunque $p \neq 2$. Per [3, IV.5.12], $Q = \langle x \rangle$ agisce non banalmente su $\Omega = \Omega_1(P)$, e supponiamo $\Omega < P$. Allora (1.1) Q agisce come gruppo di automorfismi potenza su Ω , $x^{-1}ax = a^r$, (r, p) = 1, per ogni $a \in \Omega$. Sia α l'automorfismo indotto da x su P, e \beta l'automorfismo di P che agisce nel modo seguente: $b^{\beta} = b^r$, per ogni $b \in P$. $\alpha \beta^{-1}$ fissa ogni elemento di Ω , e pertanto, per [3, IV.5.12], ha ordine una potenza di p, sia p^s . Poiché $\alpha\beta = \beta\alpha$, sarà dunque $\alpha^{p^s} = \beta^{p^s} \in \langle \beta \rangle$; ma α ha ordine primo con p, e allora $\alpha \in \langle \beta \rangle$. Pertanto α è un automorfismo potenza di P; assurdo, per 1.1. Dunque è $\Omega = P$, ossia P è abeliano elementare. Sia $H \leq P$, H normale minimale in G. Se |H| > p, Q non agisce come gruppo di automorfismi potenza su H, quindi per I.I deve essere H = P. $H\Phi(Q)$ è un τ -gruppo; pertanto, G è in (ii). Sia dunque ciclico ogni p-sottogruppo normale minimale in G, mentre P non è ciclico, altrimenti G sarebbe un τ-gruppo. Detto H < P un sottogruppo normale minimale di G, e K un complemento Q-invariante di H in P, Q agisce su K come gruppo di automorfismi potenza (1.1). Sia $\{i\} \neq \langle a \rangle \leq P$ e non normalizzato da Q; (a) esiste certamente, altrimenti Q sarebbe un gruppo di automorfismi potenza su P; pertanto $(a) \leq K$, $(a) \neq H$. Ma a = hk, con $h \in H$, $I \neq k \in K$; $\langle h, k \rangle$ è Q-invariante, ma Q non vi agisce come automorfismo potenza, per cui sarà $|P| = p^2$. È ormai facile verificare che G è in (iii).

b) Se in G il gruppo P non è abeliano, allora G appartiene a una delle classi descritte in (iv), (v).

Sia dunque $p \neq 2$. Mostriamo per induzione che Q normalizza ogni sottogruppo di P. Poiché $\Omega = \Omega_1(P)$ è abeliano per (3.2) e [5, Prop. 1.7], $P > \Omega$, e Q agisce come gruppo di automorfismi potenza su Ω . Sia M un sottogruppo massimale di P, e sia $P_1 \leq \Omega_1(M \cap Z(P))$, $|P_1| = p$. Allora $P_1 \triangleleft P$, e, poiché $P_1 \leq \Omega$, $P_1 \triangleleft G$. Sia $\overline{G} = G/P_1$, $\overline{P} = P/P_1$. Se \overline{G} è un τ -gruppo, allora $\overline{M} \triangleleft \overline{G}$,

e dunque $M \triangleleft G$. Altrimenti, poiché ogni sottogruppo proprio di \overline{G} è un τ -gruppo per [6, 1.2], \overline{G} è un τ_1 -gruppo. Se \overline{P} non è abeliano, per induzione $\overline{M} \triangleleft \overline{G}$, e di nuovo $M \triangleleft G$. Sia allora \overline{P} abeliano, e, per a), sarà abeliano elementare: $P_1 = P' = \Phi(P)$, e, poiché P è modulare, deve esistere un sottogruppo massimale H di P che sia abeliano, per [5, 1, Th. 14].

Si ha
$$|P| = p^3$$
.

Infatti, sia $|\overline{P}| \ge p^3$; QP'/P' agisce irriducibilmente su \overline{P} , per la a); allora $\Omega_1(Z(P)) = P'$ e Z(P) è ciclico; poiché inoltre $\Omega_1(H) \le Z(P)$, per la modularità di P, anche H è ciclico; poiché \overline{P} è abeliano elementare, sia ha $|H| = p^2$, e dunque $|P| = p^3$, assurdo.

In conclusione, ricordando che P è modulare non abeliano, si avrà

$$P = \langle x, y | x^{p^2} = y^p = I, [x, y] = x^p \rangle.$$

P ha p sottogruppi ciclici di ordine p^2 e quindi almeno uno di essi è normalizzato da Q; possiamo supporre che sia $\langle x \rangle$, a meno di un cambiamento di simboli. Se α è allora l'automorfismo di P indotto da un generatore di Q, si avrà $x^{\alpha} = x^k$. Ma α agisce su $\Omega = \langle x^p, y \rangle$ come automorfismo potenza:

$$\alpha(x^p) = (x^p)^s$$
 , $\alpha(y) = y^s$, $(p, s) = 1$

È allora facile verificare che k=hp+s. Nella situazione alla quale siamo ridotti, M è ciclico di ordine p^2 , e $\mathbf{M}=\langle xy^t\rangle$, $\mathbf{I}\leq t\leq p-\mathbf{I}$. Ma si può verificare che, se $r=s+p\left(h+\binom{s}{2}t\right)$, si ha:

$$\alpha(xy^t) = x^{hp+s} y^{ts} = (xy^t)^r$$

Abbiamo quindi verificato che in ogni caso $M \triangleleft G$. Osservando che $C_P(Q) = \{I\}$, altrimenti α non sarebbe un automorfismo potenza su $\Omega_1(P)$, si ha che P è minimale non abeliano modulare; ci siamo quindi ricondotti a (v), tenuto conto di [5, I, Th. 14] e di [3, II.7 Aufg. 22]. Ciò conclude la dimostrazione della b).

BIBLIOGRAFIA

- [1] W. E. DESKINS (1963) On Quasinormal Subgroups of Finite Groups, «Math. Z.», 82, 125-132.
- [2] K. Doerk (1966) Minimal nicht uberauflösbare, endliche Gruppen, «Math. Z.», 91, 198–205.
- [3] B. HUPPERT (1967) « Endliche Gruppen I », Berlin.
- [4] F. NAPOLITANI (1971) Gruppi finiti minimali non modulari, « Rend. Sem. Mat. Padova », 45.
- [5] M. SUZUKI (1956) Structure of a Group and the Structure of its Lattice of Subgroups, Berlin.
- [6] G. Zacher (1964) I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, « Rend. Acc. Naz. Lincei », 37 (3-4).