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Fisica matematica. — Quantization of a general system and ap
plication to the rigid sphere. Nota I (* (**)} di Bruno Cordani, presen
tata (*#) dal Socio D. G raffi.

RIASSUNTO. — In questa prima Nota, per mezzo di uno schema generale delle teorie 
fisiche, diamo una semplice descrizione del processo di quantizzazione di un generico 
sistema meccanico non stazionario. Tenendo presente un risultato di Van Vleck e Schiller, 
mostriamo che si può risalire dal caso limite della Meccanica Classica al caso generale della 
Meccanica Ondulatoria senza ambiguità. In questo modo l’usuale interpretazione probabi
listica della Meccanica Quantistica nasce spontaneamente.

i . In t r o d u c t io n

It is a common statetnent that spin of elementary particles has not clas
sical analogous: but this is not correct, as some authors have proved [1-4]. 
The quoted authors have in effect demonstrated that it is possible to quantize 
the model of the rigid sphere through a suitable substitution, in the classical 
Hamiltonian, of differential operators instead of canonical momenta. But 
there are even some points that, in our opinion, require explanations.

1) This quantization method is somewhat formal: historically Schrö
dinger deduced his equation remarking the analogy between the eikonal 
equation of geometrical optics and Hamilton-Jacobi equation (HJE) and con
sidering the classical mechanics (CM) like the limit of a new wave mechanics 
(WM). This way appears more natural although Rot [5] has remarked that 
the way back from CM to WM in the standard procedure, is not unam- 
bigousy. We prove instead that, taking into account a result of Van Vleck 
[6] and Schiller [7], the Correspondence Principle allows us to obtain unam- 
bigously the wave equation of a general system. This rielaboration of well 
known facts finds an effective settlement thanks to a classification scheme 
of physical theories that Tonti has recently proposed [8-9] (sec. 2).

2) The probabilistic interpretation is postulated: we show instead that, 
thanks to the quoted result, it is spontaneously suggested from the quanti
zation method.

3) The angular momentum of the quantized sphere takes up integer 
and half-integer values whilst the angular momentum in the Kepler motion 
of a point takes up only integer values. In the standatd development this 
difference is in substance postulated: we show instead in sec. 3 that it can 
be deduced.

(*) Lavoro eseguito nell’ambito dell’attività dei Gruppi di ricerca matematici del
C.N.R.

(**) Nella seduta del 16 aprile 1977.
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In the other two sections we show the connection between this quanti
zation method and the properties of the “ spin-fluid” of Bohm, Vigier et al. 
[10-11]. In sec. 4 we review shortly the work of Schiller [12] on the classical 
case of the rigid sphere in the electromagnetic field, obtaining in this way the 
equations describing a vortical fluid. In sec. 5 we show that the limit of the 
Lagrangian of the Pauli equation for arbitrary spin is the classical Lagrangian 
of a vortical fluid.

2. Q u a n t iz a t io n  of a  m e c h a n ic a l  sy st e m

Let us consider an N-dimensional Riemannian space with a metric tensor 
aiki and the wave equation for the steady case

(2.1) V2 +  n 2 &o — o

where n is the refraction index and /è0 the wave number in empty space. We 
thus have the I scheme (fig. 1). Putting

( 2 .2 )  < K * )  =  A  (* 0

with A (x) and (x) real functions in (2.1) we obtain 

(2.3a) V-(A2V ^) =  o
I V2A(2.3b) =  l a .

K  A
Eq. (2.3a) is described by the II scheme (fig. 1).

F ig . I .
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The limit process from undulatory to geometrical optics implied to as
sume in (2.3 b) the amplitude relative variations as négligeable on intervals 
comparable with the wave length. In this hypothesis (2.3 a) becomes

( 2 .4 )  ( V ^ c) 2 -  7*2

where is the approximate solution. Eq. (2.4) is the eikonal equation and 
describes the wave fronts of (2.1). Remark that adding to (2.1) a linear term 
in ^ we obtain, by the limit process, the same eikonal eq. (2.4): in this 
case the transition from geometrical to undulatory optics would exhibit some 
ambiguities if one considers only the eikonal equation. In other words merely 
geometrical considerations are not sufficient to determine unambigously the 
second order propagation equation if one knows only the equation of the wave 
fronts. If on the contrary to the eikonal equation we add (2.3 a) that involves 
also the amplitude A, in other words if besides the propagation geometry 
we consider also the energetic fact, the form of the second order equation 
results unambigously determined. Till now we have inserted in the scheme 
only the wave equation and one of the real equivalent equations. The other 
real equation, i.e. (2.4), in this form is not directly included. But the inte
gration of (2.4) as it is well known, is equivalent, thanks to the method of the 
Cauchy characteristic, to the integration of a system of 2 N first order equations. 
Using as parameter the line element ds =  (ai1c dx% dxkŸ and putting: =
— die this system is

(\oĉ  T
(2.5a) civ? n

/ I N
(2-sb> T J T  “  a* *

where D/DS is the absolute derivative.
This system is the canonical form (see [13]) of the system of N second 

order I equations

Eq. (2.6) are the bicharacteristic equations of the wave equation and describe 
the light ray path in the geometrical optics approximation*, As it is well 
known (2.6) comes from the Fermat variational principle

(2.7) S

So we obtain the III scheme (fig. 1).
Let us now consider a conservative dynamical system for which neither 

the constraints nor the potential energy V involve the time. Let us suppose 
that there are N degrees of freedom; then the kinetic energy is given by 
T =  1/2 d ik ^q 16. The motion of the system can be described as the motion 
of a point with unitary mass in a Riemannian space with a metric tensor aik.



Bruno Cordani, Quantization of a general system and application, ecc. 5 1 9

The dynamical trajectories are the extremals of the integral

( 2 .8 )  J  y2 (E— V )  d r .

The equivalent differential equations are the Lagrange equations. They 
may be written as [14, p. 144].

0 -9)

where D/D^ is the absolute derivative. Since dj =  [2 (E -—V)]* d* , the 
Lagrange equations become

(2.10) i £ r  =  d* .

and from the definition of pi it results

(2 .11) P i = b  ( E —

The system of 2 N equations (2.10-11) is the canonical form of the La
grange equations (I sch. fig. 2). They are the Hamilton equations corre
sponding to the Hamiltonian

(2.12) U = I  aikpip/e+ v  ■

The Hamilton equations are the characteristic equations of the HJE

(2.13) (VS)2 =  2 ( E ~ V ) .
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Usually at this point, remarking the formal analogy between eikonal and HJE, 
one introduces the Schrôdinger equation. But, as we said, there are many 
second order equations that, in the approximation of geometrical optics, become 
the eikonal equation. Rot [5, p. 260] has remarked this fact, but he assumes 
as a postulate that the quantum equation has the form (2.1). On the contrary 
it is possible to find in CM an equation that is formally analogous to (2.3a) 
and therefore to deduce rigorously the Schrôdinger equation: if S (q , a) is a 
complete integral of HJE, Van Vleck [6] and Schiller [7] have proved that 
the scalar density defined in configuration space

(2.14)

satisfies the equation

D (q , a) =  det d2 S 
dq* dcc&

(2.15)
where

(2.16)

dk (Dz/) =  o ,

aH

So it is possible to complete the II scheme (fig. 2): if we compare it with the 
scheme of the steady compressible fluid we notice that S and D play the same 
role of the velocity potential and fluid density. Therefore D is interpretable 
as a particle density. If we consider only a particle and we know the constants 
of motion oc& but we do not know the other initial conditions, D may be 
interpreted as a probability density. (2.15) is substantially equivalent to the 
Liouville theorem.

If we compare II and III sch. of fig. 1 with II and I of fig. 1, we 
notice their complete formal analogy. In particular

(2.17 a) n —>■ y2 (E -— V)

(2.17 b) Al ia  ~ ia ->D .

This analogy imposes that the equation of the WM is

(2.18) V2 9 + 2 (E *— V)
¥ =  o ,

h being the quantum analogous of 1 /k0. One cannot say anything about this 
quantity a priori, every information being deferred to experimental facts: but 
this is the only thing left to the experiment.

It is possible to generalize the described method and to find the wave 
equation of a system whose Lagrangian is

(2.19) L =  \ a ilt(q ,t) q* ‘qh 4- h ( q , t )  g* + c (q ,t)

and corresponding Hamiltonian

(2.20) H == \ a Ve (J>i— A)(j>h — h ) — c.
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We can apply the described method if we find another Lagrangian and another 
Hamiltonian which are equivalent to (2.19-20), quadratic and homogeneous 
in the q s  and p's and explicitly dependent only on the coordinates. This 
last requirement may be satisfied considering the time t = q° as a coordinate 
and introducing a parameter t .  With regard to the other requirements we re
member that, given a Lagrangian that is quadratic and homogeneous in (N +  i) 
velocities with a cyclic coordinate, this coordinate may be eliminated obtaing 
a Lagrangian that includes linear terms in q's. We can therefore consider the 
Lagrangian (2.19) derived from the Lagrangian: <5?— 1/2 gAB qA qB (A , B =  
=  0 , i ***N-+ 1), through the elimination of a cyclic coordinate ^N+1. The 
corresponding Hamiltonian is £?= 1)2 gAB pApB , The tensor gAB is to be 
determined as a function of aik , b{ }c. This may be made thanks to a theorem 
of Eisenhart [15]: the solutions of (2.19-20) are the projection on the hyper
plane (g°* • -yN) of the geodesics with zero length of a Riemannian space with 
a non definite metric

12 c bk i \  i o  o  I \

(2.21) g A B = ibi aik o |  ; £a b= ( °  aik ~ bi I*
\  I o o /  \  I ■— • bk bh bh — 2 c )

Note that ] g |. =  a. The Eisenhart theorem may be easily checked con
sidering the (2 N + 4 ) Hamilton equations from As to the indices o 
and (N +  1) they are

(2.22) di
dx =  î N+1

dpo
dr

1
2 PA PB

(2.23)
d^N+1

dr PB
d g +1

dx o .

The latter of (2.23) states that p^+i is constant, in accordance with the fact 
that q®+1 is cyclic. If we put this constant equal to 1 (therefore d̂  =  dx), we 
obtain what the theorem states. In fact: the other two equations become

(2.24) dp0 ____9H dçN+1
d t dt dit

and therefore j>0 coincides with H and ^N+1 with the action except in sign; 
the other 2 N equations coincide with those derived from (2.20). Put: ds2 =  
=  £ab d^A dqB; this line element is null for the solutions and therefore 

o. Jf7 being constant and the terms corresponding to the potential 
energy being not present, the principle of least action is

(2.25) 8

that is equivalent, as one sees through simple computations, to the Hamilton 
principle
(2.26) 8 L d/ =  o .

35 — RENDICONTI 1977, voi. LXII, fase. 4.



$22 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LXII -  aprile 1977

The quantum equation, the numerical value of being zero and the terms 
corresponding to the potential energy being not present, results

(2.27) V2 <D (?° • • • 7N+1) =  o ,

where the Laplacian is expressed in the metric (2.21). Since yN+1 is cyclic 
we may put

(2.28) <D =  9 (t, • • • yN) e{il̂ +\

so obtaining the equation already found by Rot [5, p. 262]. This equation 
may be simplified putting

( 2 .2 9 )  ^  =  cp&1/4,

from which we obtain the wave equation

(2.30) [ I  a - -  ( Ì  *  -  i )  » “  ( ±  3, -  h )

This may be obtained writing the Hamiltonian in the form

(2.31) H ■ = ± a -* ( jh- b ò a W a!*(pt - - b ò a - ' i* — c 

and making the substitution
h

(2.32) PV.-+-JÎV. ([2 =  0 ,1  , • • •, N)

in the equation: H (g , p , t) +  Po — °. By this way we obtain the genera- 
Hzation of the known Podolsky rule [16].
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