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Topologia. — Wallman Compactifications by Collections of o—i 
Measures. Nota di M ic h a el  J.. D ’A m br o sa , presentata(,) dal Socio 
G. Z a p p a .

R iassunto. — Si prova che ogni compattifiçazione di Wallman è equivalente a una 
compattificazione generata da una collezione di certe o—1 misure. Si estende poi il cosiddetto 
« Portmanteau theorem » di Varadarajan.

In Varadarajan [11] there is a measure-theoretic treatment of the Stone- 
Cëch compactification ßX of a Tychonoff space X. We extend this to a more 
general framework by showing that every Wallman compactification (as 
in Frink [4]) is equivalent to a compactification generated by a collection 
of certain o— 1 measures. We thereby extend the so-called “ Portmanteau 
Theorem ” of Varadarajan (Part II, Theorem 2) and Aleksandrov [1] and we 
complement the work of Frink by giving an explicit integral representation 
of certain extended functions.

Since we are concerned with Hausdorff compactifications of X, we’ll 
assume throughout that X is a Tychonoff topological space. If A is a subset 
of X, the complement of A will be denoted by A'; other complements will 
be denoted by “—

Note that we establish a one-to-one correspondence between A-ultra- 
filters (where A is a normal base, as in Frink) and O'— 1 measures. Thus 
the usual ultrafilter statements have corresponding measure statements. We 
will only point out those which we need, but the reader will certainly reco
gnize others. For example we can characterize compactness by the fact that 
all thei measures are “ fixed

§ I. The W allm an C om pactification co (A , X)

We begin by reviewing some terminology and results in [4]..

1.1. D efinition. A collection A of closed subsets of X is called a normal 
base for X iff:

(1) A is a base for the closed sets of X.

(2) A is closed under finite unions and intersections.

(3) A is disjunctive; i.e. if x $ F for some closed subset F of X, then 
there exists some A c  A such that x e  A  and A f l F - 0 .  (*)

(*) Nella seduta del 16 aprile 1977.



M ich ael J. D ’Ambrosa, Wallman Compactifications by Collections, ecc. SOI

(4) If A and B are disjoint members of A, then there exist E and F 
in A such that A c  E' , B e  F' , and E' D F' — 0 .

If, in addition, A is closed under countable intersections, it is called a 
8-normal base.

The following is easy to prove:

1.2. THEOREM. I f  A is a normal base fo r  X, then A Is a complete neigh
borhood system.

Now let co ( A , X) be the collection of all A-ultrafilters on X and let 
L* =  {<De co ( A , X) : L e  <D} for each L e  A. Let h (x) =  O* =  {Le A : 
x e  L}, Thus h (x) is the unique^A-ultrafilter which converges to x . Frink 
has proven that (co (A , X) , h) is a Hausdorff compactification of X-generally 
called a Wallman compactification since Frink generalizes a procedure used 
in [12]. The question of which compactifications are equivalent to some Wall- 
man compactification has been investigated in [2], [7], and elsewhere.

The following theorem, similar to one in [3], gives us a sufficient condition 
for a compactification to be Wallman.

1.3 Theorem. Let (X~ , k) be any Hausdorff compactification of X and 
let A be some normal base fo r  X. For each L 6 A, let L~ be the closure of k (L) 
in X~. Suppose:

(a) (A fi B)~ =  A~ D B~ fo r  each A and B in A.
(fi) A~ =  {L~ : L e  A} is a base fo r  the closed sets of X.

Then: (1) A~ is a normal base fo r  X~ (hence also a complete neighborhood 
system). Furthermore let G (z) =  ®z =  {Le A : z e  L~} fo r  each z e  X~. Then 
we also have (2) Oze co (A , X). (3) G (L~) =  L* =  {<!>e co (A , X) : L e  ®}.
(4) G is a homeomorphism from  X~ onto co (A , X) and G°^ =  A, so that 
(X~ , k) is equivalent to (co (A , X) , h).

Proof, (i) (1), (2), and (4) of 1.1 are easily proven. So assume z $ K, 
where K is closed in X~. By (b) there exists Le A such that K cL ~  and z $LT. 
For each y e L~ we can find some A y in A such that z e A f  and y $ A f .  By 
the compactness of L~ we can find Aj ,̂ • • - , A n in A such that z e A f  for j  =  
=  I , 2 , • • •, n and the collection X~ •—■ A~  , • • •, X ~ — A~ covers L~. Let

n
A — p) A  ̂ to prove (3) of 1.1. So (r) .is proven, (ii) It is easy to show that

0 2 is a A-filter. Now suppose L e  A and L O A ^ 0  for each A e  <FZ. Sup
pose z $L~. By (1) there exists A e A  such that z e A ~  and A'v fiL 'v/= 0 .  
Hence A e  ®z and A D L  — 0, which is a contradiction. Thus z e L~, so that 
L e ®z, proving (2). (iii) Next assume ®z === ®r If z f i  y  there exist A and B 
in A such that y e A ~  , ^eB ~ , and A~ O B ~ =  0. Thus A eO ÿ and B e <DZ, 
which is a contradiction. Hence z == y  and G is one-to-one Now let z e Y T  
and let L e  A. Then $ 2g G (L~) iff z e  L~ iff L e  iff ®ze L*, proving (3). 
(iv) Clearly G is onto. Let A* =  {L* : L e  A }.. Since A~ and - A*.are bases for
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the closed sets of X~ and co ( A , X) , G is a homeomorphism. So to prove
(4) it remains to show that G o k =  h. So let x e X and let k (x ) = * e X ~ .  
Now L e  ^  implies x e  L; thus z =  k (x)e k (L)c= L~, so that L e  ®2. So
(5) xcz ®2. Bui Ox is maximal, so 0^ = 0^ ; i.e. h (x) — G (z) =  G {k (x)).

§ 2. A-regular o — I Measures

Throughout this section A will denote a fixed normal base for X. Let 
A (A) be the algebra generated by A.

2.1. D efinition. M (A ,X )  is the collection of all set functions p defined 
on A (A) such that:

(a) p (0 )==  o and p ( X ) = i .

(b) p (E) =  o or I for each E in A (A).

(c) p is finitely-additive.

(d) p is A-regular\ i.e. p (E) =  sup {p (L) : L e  A and L e  E} for each 
E in A (A).

Any set function satisfying (d)-(c) is called a “ o-—1 measure ”. In 
addition to the usual properties we have:

2.2. Lem m a. Let pe M (A , X) and let E and F be in A  (A). Then:

(1) p (E) =  i iff (E') =  o.

(2) (X (E U F) =  I iff (X (E) =  I or [x (F) =  i.

(3) [x (E n  F) =  I iff fx (E) =  I and fx (F) =  i .

This easily proven lemma implies the following'.

2.3. Theorem. For each L e  A, let L" =  {pe M (A , X) : p (L) == 1}.
Then'. (1) For each E and F in A, (E U F ) " = E Ä U F" and (ED F ) * =  E" O F A.
(2) A A=  {LA : L e  A) is a base fo r  the closed, sets fo r some topology on X.

Hereafter L A and A" will be as above and M (A , X) will have the 
topology generated by A A. Now we establish a connection between A-ultra- 
fiiters and o— 1 measures.

2.4. LEMMA. Let ® be a A-ultraflter. Let A  (®) =  {E c  X : L e  E or 
Lcz E' for some L e  ®}, Then A  (®) is an algebra and A  (®) contains A  (A).

Proof. (1) Clearly E e  A (®) implies E 'e A (<D). Now suppose E and F 
are in A (®). Case (f): K c  E' and L e  F', where K and L are in ®. Then 
K D L c  E' n  F' =  (E U F )\ Since K n L e  ® , E U F e  A (®). Case (ii): 
Le: E or L e  F for some L e  ®. Then L c  E U F ,  so that E U F e  A (®). 
Therefore A (®) is an algebra. (2) Now let L e  A. If L e  F' for some F e  O, 
then Fc: L' and so L e  A (<E>). If L<£ F' for each F e  ®, then L f l F ^ 0  for 
each F e ®; thus L e  Oc: A (®). Therefore A c  A (®), so that A (A )c  A (®).
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2.5. Theorem. Let ® be a K-ultraMter. For each E e  A  (A) let fx# (E) =  1 
i f  L e  E fo r  some L e  ® and (x# (E) =  o i f  L e  E' fo r  some L e  ®. Then 
( i® eM (A ,X ) , .

Proof. By 2.4 one of the above conditions must be true. Since both can’t 
be true fx$ is well-defined and clearly satisfies (a) and (b) of 2.1. Now suppose 
E and F are disjoint sets in A  (A). Assume L e  E for some L e  ®. Then 
L e  E U F  and L e  F'. Thus fx$ (E U F) =  1 =  1 +  o =  jx$ (E) +  (x$ (F). 
Similar results hold if L e  F for some L e  0 . So now assume L 4= E and L 4= F 
for each L e  O. By 2.4 there exist A and B in <D such that A c  E' and B e  F', 
so that A n  B e  (E U  F)'. Hence (x$ (E U  F) =  0 =  0 +  0 =  [x$ (E) (F).
Thus 2.1 (c) is proven and (d ) follows from 2.4.

Now let ® =  <£Vfor some (fixed) x e  X  and denote [x$ by [x̂ . Applying 
2.4 and 2.5 we easily establish the following for these “ fixed” o-— 1 measures.

2.6. Corollary. Let x  be a fixed element of X and, fo r  each E e  A  (A), 
define \hx (E) =  1 iff x e  L e  E fo r  some L e  A and [lx (E) =  o iff x e  L e  E' 
for some L e  A. Then ^ e M ( A ,  X). Furthermore \lx (E) .= 1 iff x e  E and 
Pz .(E) =  o iff X $ E.

Let V (L) = M  (A , X) — L A for each L e  A. Thus {V (L) : L e  A} is 
a base for the open sets of M (A , X). Note [xe V (L) iff fx^L" iff (x (L) f i  1 
iff |x (L) =  0. So V (L) =  {(xe M (A , X) : (x (L) =  o}.

2.7. Lemma. For each x e  X  let g  (x) — [x̂ .. Then: (1) g  is one-to-one. 
(2) g  (L') =  V (L) D g  (X) fo r  each L e  A. (3) g-1 (V (L)) =  V  fo r  each L e  A.

Proof\ (1) Assume x f i  y . Then there exists L e  A such that ^ e L j ^ L ;  
thus y.x (L) =  I and [iy (L) =. o. So f i  \Ly or g  (x) f i g  (y). (2) Let x e  X
and let g  (x) =  [lx. Since g  is one-to-one pxe g  (.L') iff ^ e  L' iff (L) =  o 
iff ^ e v  (L) n g  (X). (3) L '= r >  {JS (LO) = r *  (v  (L) (X)) =g->  (V(L)) n

Gr (X)) =  r 1 (V (L)) n  x  =  r x (V (L)).

2.8. Theorem. (M (A , X) >g) is a Hausdorff compactification of X.

Proof‘ (i) 2.7 (2) implies g  is open; 2.7 (3) implies is continuous. Thus 
g is homeomorphism. Now suppose V (L) f i  0 for some L e  A. Then L ^ X ,  
so that U  f i  0 and thus g  (L') f i  0. So by 2.7 (2) V (L) Cìg (X) f i  0 .  The
refore g  (X) isdense in M (A , X). (ii) Suppose [L f i  v in M (A , X). Then 
there exists A e  A such that jx (A) =  1 and v (A) =  o, or conversely (if (x =  v 
on A, then [x =  v on A (A) by regularity). Since v (A') =  1, there exists B e  A' 
such that B e  A and v (B) == 1. Now A n  B =  0 , so there exist E and F in 
A such that A e  E' , B e  F', and E' O F' — 0 . Note A e  E' implies [x (E') — 1; 
hence [x (E) =  0 or [i,e V (E). Similarly ve V (F). Finally V (E) O V (F) =  
=  M ( A ,  X) — (EA U F > M  (A , X)*— ( E U F ) A = M ( A  , X)-—M ( A , X) =  0 .  
Thus M (A , X) is a Hausdorff space, (iii) Let =  {La*} be any collection 
of basic closed sets (i.e. Lae A) having the finite intersection property. To 
prove M (A , X) is compact it suffices to show £iA has a non-empty intersec-
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tion. Let £2 =  {La}, so that £1 also has the finite intersection property (2.3). 
So £1 can be extended to a A-ultrafilter ®. Let pt. =  > as in 2.5. Now
p (L )= i. for each L e ®, so that p e L *  for each L e  O. Thus peL^ for each 
a, proving M (A , X) is compact, which completes the proof of 2.8.

2.9. LEMMA. For each L e  A ,^ (L ) -  L Ä (where the closure is taken 
in M (A , X)). . -

Proof’. x e  L implies g  (x) — \ixe L", since (L) =  1. Thus g  '(L)c L A. 
Since L" is closed g  (L )c LX Now let pG L~ and let U be any neighborhood 
of p. Then there exists A e  A such that [te V (A)c= U. Now p (A) =  o and 
p (L) == I, so that L 41 A. So choose any ^ e L  — A; then g  (x) =  p̂ G g  (L). 
But p̂  (A) — o, so that p^e V (A)c= U. Hence U n ^  (L) ^ 0 ,  so that pG g  (L); 
i.e. L Ä c  g~(L).

2.10 Theorem. Let co (A , X) and h be as in § i. Define G from  M (A , X)
to co (A , X) by G (p) -  =  {Le A : [x (L) — 1}. Then G is a homeomor-
phism from  M (A , X) onto co (A , X) and Gog =  h; i.e. the compactifications 
(co (A , X) , h) and (M (A , X) yg) are equivalent.

The proof of this theorem follows from the above and 1.3. Furthermore 
we can easily show that G”1 (O) == p.$ (as in 2.5) for each <D e co (A , X). 
We close this section with a result from [4].

2.11 D efinition. A function/  from X into R (reals) is said to be A- 
uniformly continuous iff for each $ >  o there exist Lx , • • •> La in A such that

n
X =  (J L5 and iî x y y  e l f s (for some s =  1 , • • •, n)f then | /  (x) ■—f  (ÿ) | <  S.

«=1
2.12. T h e o r e m . Let f e  C (X). Then f  has a continuous extension F to 

co (A , X) (i.e. Foh =  / )  iff f  is K-uniformly continuous.
Note that Frink’s theorem clearly applies to any compactification equi

valent to co (A , X)-in particular it applies to M (A , X).

§ 3. Integration and M (A , X)

Since the elements of M (A , X) are measures, it is only natural to define 
an integral. However, we mut be careful since the measures are only finiteiy- 
additive. Thus we define a M measurable function ” as follows (where A is 
a normal base):

3.1. D efinition. A function f  from X into R is K-measurable i f f /“1 (I) e 
e A (A) for each (finite or infinite) interval I of R.

Thus if /  is bounded and A-measurable we can use the classical Lebesgue

approach to define I /  dp for any p eM  (A , X) and any E g A (A). See,

for example, [10], pp. 332-333. We will denote j f  dp simply b y j / d p .  The 

integral will have the usual (finiteiy-additive) properties ([10], pp. 334- 337).
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Unfortunately a continuous function is not necessarily A-measurable, so we 
need a condition stronger than continuity (in this connection see [i ]).

3.2. D e f i n i t i o n .  Let/ :  X -> R. T h e n / is A-continuous i f f / -1 (K)e A 
for each closed set K in R.

Note that A-continuous implies A-measurable (and continuous). The 
following is easily proven:

3.3. LEMMA I f  A. is a 8-normal base, then the following are equivalent: 
(1) /  A -continuous, (2) { / e  X : /(# )  >  oc} and {xe  X : / ( / )  <  a} ^  
plements of sets in A fo r  each a 2» R. (3) {xe  X : /  (x) >  a} äm/ G X : /  (#) <a}

A fo r  each a zVz R.
The following version of Urysohn’s Lemma is proved in [1] (1940, p. 317, 

Lemma 2).

3.4. Lemma. Let A  be a 8-normal base and let L and M be any disjoint 
sets of A. Then there exists a A-continuous function f  such that o < /  <  1, 
/ (L) =  {o}, an d / (M) =  {i}.

3.5. Lemma. Let A  be a ^-normal base fo r  X, let [xgM (A, X), and

let {(A*} be a net in M (A , X). Suppose J f  dpa Jf dyL fo r  each bounded

A-continuous function / .  Then lim (L) <  [jl (L) fo r  each L G A (so that lim 
(Jia (L') >  [x (L;) also).

Proof. If (x (L) =  I the result is clear, so assume x̂ (L) =  o. Hence 
[x (L') == I, so that there exists M g  A such that M c  L' and fx (M) =  1. Note 
p/M ') =  o and M O L  — 0 , so by 3.4, there exists a A-continuous function

/  such that o < / < i  , / (M )  =  {o}, a n d /(L )  =  {i}. Thus |/d [x  = J*/d (x+
ç  M

-J- j /d [x =  o +  o =  o. Suppose o <  8 <  1. Then there exists ß such that

j f  dp. — j f  d[xa <  8 for each a >  ß. Thus o <  J f  dfxa < 8  for each a >  ß. 

If a >  ß, then 8 >  J f  dp,a >  J /d [x a =  [xa (L). So (xa (L) == o for each a >  ß,

from which lemma follows.

3.6. LemMA. Let A be a normal base for  X, and let f  be bounded and A- 
continuous. Let F (t) =  {xe  X : f  (x) <  /}. For some (fixed) [xgM (A,  X) 
define <j> (t) =  [x (F (t)). Assume — N <■—• K < /  (x) <  K <  N (K >; o ,N >  o) 
fo r  each x e  X. Then: (a) there exists some real number 2 such that fi (t) =  1

N

N — J<{> (t) dt.
- N

fo r  t  >  2 and (j) (t) =  o fo r  t  < 2 y and (b) J /d f*  = z  =

Proof. Note that § is increasing, (j> (t) =  o or 1 for each t , <j> (N) =  1 
and <|> (■— N) =  o, proving (a). Now let 8 >  o be given. We may assume

34. — RENDICONTI 1977, voi. LXII, fase. 4.
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— N <  z  — 8 <  z  +  8 <  N, so that 0 =  F (■— N)c= F (*'■— 8 )c  F (z +  8 )c  
c  F (N) =  X. If we let A -  F (N) — F (* +  8) , B == F (s +  S) — F (a— 8), 
and €  =  F (*■— 8), then A , B, and C are disjoint sets whose union is X.

Note p. (A) =  o and p. (C) =  o. Thus j f  dp. =  j  f  dp., and p, (B) =  1. But
b r

z *— 8 < f ( x )  <  #  +  8  for each x e  B, so that z -— 8 <  J  /  dp, <  #  +  8. Thus 

j — z  and the rest of (b) follows by integrating.

The following is the converse of 3.5. Note that we need not assume A 
is S-normal.

/  dp, fo r  each bounded

3.7 LEMMA. Let A be any normal base fo r  X; let p . e M ( A , X )  and 
let {p,a} be a net in M (A , X). Suppose for each L e  A , Hm p,a (L) <  p, (L)

(so that lim p,a (L') >  p, (L') also). Then f  dp,a 
A-continuous function f .

Proof. Assume — N < — K < /  <  K <  N. Let F* =  {xe  X : /  (x) <  t} 
and let Gt =  {x e  X : f ( x ) <  t}, so that F* and G* are in A for each t . Let 
<[> (f) =  p, (Ft) and cj)a (t) =  p,a (Ft). Thus (1) lim <j>a (f) <  <j> (t) for each t. Note 
s <  t implies Fsc  G*c Ft , so that p. (Fs) <  p. (Gt) <  p, (F*) and p,a (F,) <  p.a 
(G*)< p*a(F̂ ). So, for each 8 > o , p. (G*) >  p.(F*_g) =  § ( t -— 8). Also p.a(G ,)<  
<  p*a (F t) =  (j)a (t). Thus, for each 8 >0; , cj> (t-— 8) <  p. (Gt) <  lim p.a (G*) <  lim
P*a (Ft) =  lim (j>a (,t) .  So we’ve shown: ( 2 )  cj>(7— :8) <  lim cj>a (£) for each t  and

------  N ----  ------  N

each 8 >  o. Since Jf dp, =  N ■—• f  <j> (£) dt  and j f  dp,a =  — N J <j>a (t) dt, it suffi-
- N  * -  N

ces to show that lim I <[>a (t) d t =  cj> (t) dt. So let z  be as in 3.6 (for p.), and
-N —N ____  ___

let 8t>o. Now (j> (z-— 8) =  o, so that lim cj>a (\z — 8) < 0  by (1); therefore lim 
<j>a(#— 8) =  o. So there exists ß such that <[>«(#■— 8) =  o for a > ß ,  so that

N N

<kc00 =  °  f°r t < z — 8 and all a > ß .  Thus <j>a 09'dtf =  (j)a ( / ) d / < N
z-B

— (z*— 8) =  (N*—z) -j- 8 for each a >  ß. Hence lim j (j)a (t) d / < (N— z) -f 8.
- N

N

Clearly then lim I <j>a (f) dt < N  ■— z. Similarly by (2) (j> (t-— 8 ) <  lim <[>a (f) for 
- N

each t and each 8 >  o. Thus 1 = ^ ((^  +  28) — 8) <  lim <{)a (z +  2 8). So there 
exists y such that cj)a (z +  2 8) =  1 for each a >  y. Thus (j)a (t) =  1 for each

N N

t > z ~F 2 8 and for each a > y .  So J  ck 00 d/ >  j* (/) àt — N — (  ̂+  2S) =
- N z+atB
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N

— (N-—•#) — 2S for each a > y .  Thus Um I <j>a (£) ch>(N -—#)■— 28, impliyng

We are now in a position to prove the following extension of the so-called 
“ Portmanteau Theorem ”, where convergence of nets of measures is related 
to convergence of integrals. Our theorem generalizes a theorem in [11] (Part 
II, Theorem 2).

3.8. T h e o r e m . Let A be a normal base for  X, let [ie M (A , X), and let 
{|xa} be a net in M (A , X). Consider the following statements'.

(0  [La —> (x (i.e. fo r  each basic neighborhood V (L) of fx, where L e  A 
there exists ß such that fxae V (L) whenever a >  ß.

(2) lim (xa (L) <  fx (L) fo r  each L e  A.

(3) lim{xa (L') >  (x (L') fo r  each L e  A.

(4) [xa (L) -> [x (L) whenever L e  A and fx (L) =  o (i.e. there exists ß 
such that fxa (L) =  o fo r  a >  ß).

(5) J/d^xa —>JfdyL fo r  each bounded Krcontinuous function f .

Then: (a) (1) through (4) are equivalent, (b) (1) through (4) imply (5).
(c) I f  A is a 8-normal base, all five are equivalent.

Proof. Clearly (2) and (3) are equivalent. Now assume (2) is true and 
[x (L) =  o for some L e  A. Then o <  lim [xa (L) <  lim (i.a (L) <  (L) — o.
Hence (2) implies (4). Next assume (4) is true and assume (xe V (L) for some 
L e A. Thus [L (L) — o, so that there exists ß such that fxa(L) =  o for a >  ß. 
Hence [Aae V  (L) for a >  ß, proving (4) implies (1). Now assume (1) is true. 
If (X (L) =  I , (2) clearly holds; so assume [x (L) — o (Le A). Thus (xe V (L) 
and there exists ß such that (xae V (L) whenever a >  ß; i.e. |xa (L) =  o for 
a >  ß. Thus lim [xa (L) =  o =  (x (L), proving (1) implies (2). So (a) is proven; 
(b) and (c) now follow from 3.7 and 3.5.

We close by showing a connection between A-continuous and A-uni- 
formly continuous functions and by deriving an integral representation for 
the extension to M (A , X). This complements a result of Frink [4] already 
noted and Varadarajan [11 ].

3.9. T h e o r e m . Let A be a normal base fo r  X and assume f  is bounded 
and A-continuous. Then'. (1) f  is A-uniformly continuous and hence has a 
continuous extension F to M ( A , X).

(2) F ((a) == J f  d[x fo r  each [x€ M (A , X).

Proof. It suffices to define F as in (2) and prove that F is a continuous 
extension of /  to M (A , X) (which, of course, is unique). So let jxeM (A,  X)

N
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and let {jxJ be any net in M (A , X) such that (xa !*• By 3.8 f f  d^ß/dp.;

i.e. F.(fxa) —»■ F (jx), proving F is continuous. Now let g  (x) =  y.x as in § 2. 
We need to show F - g —f .  So let F t — { y e  X : /  (y) <  /} and let 9 (/) =  
=  y-x (F<) as in 3.6 (for fixed x). Note r e  F, iff fix') <  t. So \xx (Ft) =  1 if

t > / (,x) and y-x ( F / )  =  o  if /  < / (a:). Thus, as in 3.6, J / d p ,  =  s = f ( x ) .  Thus 

F  ( g ( x)) =  F  ( y x) =  f  f à y .x = f ( x ) .
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