Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali Rendiconti

Monir S. Morsy
 The construction of Gysin-Thom homomorphism
 Between the Cohomologies of Complex Quadric and the Complex Projective space with integer Coefficients

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 62 (1977), n.4, p. 476-479.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1977_8_62_4_476_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria algebrica. - The construction of Gysin-Thom homomorphism Between the Cohomologies of Complex Quadric and the Complex Projective space with integer Coefficients. Nota di Monir S. Morsy, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - La costruzione dell'omomorfismo indicato nel titolo viene effettuata poggiando su decomposizioni in celle di una quadrica e di uno spazio proiettivo nel campo complesso.

Introduction

Let $\mathrm{P}_{n+1}(\mathrm{C})$ and $\mathrm{Q}_{n}(\mathrm{C})$ denote, respectively, the complex $(n+\mathrm{I})$ dimensional projective space and the n-dimentional complex quadric. If $\left(z_{0}, z_{1}, \cdots, z_{n+1}\right)$ denote homogeneous complex coordinates on $\mathrm{P}_{n+1}(\mathrm{C})$, then $Q_{n}(C)$ in $P_{n+1}(C)$ is given by the equation

$$
\sum_{j=0}^{n+1} z_{j}^{2}=0 .
$$

We propose in this paper to explain the following
Construction. Given $\mathrm{Q}_{n}(\mathrm{C})$ and $\mathrm{P}_{n+1}(\mathrm{C})$, then we construct the GysinThom homomorphism

$$
f^{*}: \quad \mathrm{H}^{2(n-r)}\left(\mathrm{Q}_{n}(\mathrm{C}) ; \mathrm{Z}\right) \rightarrow \mathrm{H}^{2(n+1-r)}\left(\mathrm{P}_{n+1}(\mathrm{C}) ; \mathrm{Z}\right)
$$

by using cellular decompositions of $\mathrm{P}_{n+1}(\mathrm{C})$ and $\mathrm{Q}_{n}(\mathrm{C})$.
The paper is divided into two sections: § i is devoted for some preliminaries; the construction takes place in $\S 2$.

The numbers in square brackets refer to the bibliography at the end.
§ I. Preliminaries [see e.g. I and 2]
Definition 1. Let p and q be two distinct points in $\mathrm{P}_{n+1}(\mathrm{C})$ having respective coordinates $\left(z_{0}, z_{1}, \cdots, z_{n+1}\right),\left(z_{0}^{\prime}, z_{1}^{\prime}, \cdots, z_{n+1}^{\prime}\right) . \quad p$ and q are said to be conjugate with respect to $Q_{n}(C)$ if $\sum_{j=0}^{n+1} z_{j} z_{j}^{\prime}=0$.

DEfinition 2. The locus of all points conjugate to a given r-complex projective subspace $\mathrm{P}_{r}(\mathrm{C})$ of $\mathrm{P}_{n+1}(\mathrm{C})$ with respect to $\mathrm{Q}_{n}(\mathrm{C})$ is an ($n-r$)-complex projective subspace $\mathrm{P}_{n-r}(\mathrm{C})$ which of $\mathrm{P}_{n+1}(\mathrm{C})$ is called the polar space of $\mathrm{P}_{r}(\mathrm{C})$ with respect to $\mathrm{Q}_{n}(\mathrm{C})$.
(*) Nella seduta dell'8 marzo 1975.

DEFINITION 3. If $n=2 r$ or $n=2 r+1$, the quadric $Q_{n}(C)$ contains complex projective spaces of dimension r and does not contain any complex projective space of dimension higher than r. These are called the generators for $Q_{n}(C)$.

We have to note that:
a) If $b=2 r$, the set of generators of $\mathrm{Q}_{n}(\mathrm{C})$ constitutes two distinct families.
b) If $n=2 r+\mathbf{I}$, the set of generators of $\mathrm{Q}_{n}(\mathrm{C})$ constitutes only one continuous family.
c) The intersection of two distinct generators $\mathrm{P}_{r}(\mathrm{C})$ and $\mathrm{P}_{r}^{\prime}(\mathrm{C})$ of the same family is an $(r-2 s)$-complex projective space, where s is an integer such that $r-2 s \geq 1$. But if they belong to two different families, then their intersection will be an $(r-2 s-1)$-complex projective space, where s is an integer such that $r-2 s \geq 0$.

$$
\text { d) } \mathrm{P}_{r}(\mathrm{C}) \cap \mathrm{P}_{r}^{\prime}(\mathrm{C}) \quad \text { of }\left\{\begin{array}{ccc}
& \begin{array}{c}
r \text {-even }
\end{array} & r \text {-odd } \\
\text { the same family } & \begin{array}{c}
\text { one point } \\
\text { in common }
\end{array} & \begin{array}{c}
\text { disjoint }
\end{array} \\
\text { different families } & \text { disjoint } & \begin{array}{c}
\text { one point } \\
\text { in common. }
\end{array}
\end{array}\right.
$$

Definition 4. Let $q \in Q_{n}(\mathrm{C})$ and let $\mathrm{P}_{n}(\mathrm{C})$ be the polar plane of q reith respect to $Q_{n}(\mathrm{C}) . \quad \mathrm{P}_{n}(\mathrm{C}) \cap \mathrm{Q}_{n}(\mathrm{C})$ is the quadric cone Σ_{n-1} having q as its vertex.

Given two distinct points q and $q^{\prime} \in Q_{n}(\mathrm{C})$ with respective polar planes $\mathrm{P}_{n}(\mathrm{C})$ and $\mathrm{P}_{n}^{\prime}(\mathrm{C})$ with respect to $\mathrm{Q}_{n}(\mathrm{C})$. The central projection from q onto $\mathrm{P}_{n}^{\prime}(\mathrm{C})$ puts in ($\mathrm{I}-\mathrm{I}$)-correspondence $\mathrm{P}_{n}^{\prime}-\left(\mathrm{P}_{n}(\mathrm{C}) \cap \mathrm{P}_{n}^{\prime}(\mathrm{C})\right.$) and $Q_{n}(C)-\Sigma_{n-1}$ which is then homeomorphic to an algebraic open cell.

Let $\mathrm{P}_{k}(\mathrm{C})(k<r)$ be a generator of $\mathrm{Q}_{n}(\mathrm{C})$ and $\mathrm{P}_{n-k}(\mathrm{C})$ be its polar space with respect to $Q_{n}(C)$, then $\mathrm{P}_{k}(\mathrm{C})$ is the vertex of a $(k+\mathrm{i})$-fold degenerate quadric $\Sigma_{n-k-1}=Q_{n}(\mathrm{C}) \cap \mathrm{P}_{n-k}(\mathrm{C})$.

Let $q^{\prime} \in \Sigma_{n-k-1}$ such that $q^{\prime} \notin \mathrm{P}_{k}(\mathrm{C})$ and let $\mathrm{P}_{k+1}(\mathrm{C})$ be the generator of $\mathrm{Q}_{n}(\mathrm{C})$ which contains $\mathrm{P}_{k}(\mathrm{C})$ and q^{\prime}. The polar space $\mathrm{P}_{n-k-1}(\mathrm{C})$ of $\mathrm{P}_{k+1}(\mathrm{C})$, with respect to $Q_{n}(C)$, intersects $Q_{n}(C)$ in a $(k+2)$-fold degenerate quadric Σ_{n-k-2}. Every point of $\Sigma_{n-k-1}-\Sigma_{n-k-2}$ corresponds in a unique manner to a straight line in $\mathrm{P}_{n-k}(\mathrm{C})$ which passes through q^{\prime} and does not lie on $\mathrm{P}_{n-k-1}(\mathrm{C})$. Thus $\Sigma_{n-k-1}-\Sigma_{n-k-2}$ is homeomorphic to an algebraic open cell.

§ 2. The construction

Let us first construct the cellular decomposition of each of P_{n+1} (C) and $Q_{n}(C)$.
(I) The cellular decomposition of $\mathrm{P}_{n+1}(\mathrm{C})$ goes as follows. One can find the following sequence $\left\{\mathrm{P}_{\boldsymbol{r}}(\mathrm{C})\right\}_{0 \leq r \leq n+1}$ of complex projective subspaces of $P_{n+1}(C)$ such that:

$$
P_{n+1}(C) \supset P_{n}(C) \supset \cdots \supset P_{1}(C) \supset P_{0}(C)
$$

The difference of any two successive projective subspaces constitutes an algebraic open cell. That sequence then defines a subdivision of $\mathrm{P}_{n+1}(\mathrm{C})$ into algebraic open cells. These cells constitute the bases for the homology group $\mathrm{H}_{*}\left(\mathrm{P}_{n+1}(\mathrm{C}) ; Z\right)$.
(2) The cellular decomposition of $Q_{n}(C)$ is constructed as follows.
(i) n is odd $(=2 r+1)$:

Let us consider a sequence $\left\{\mathrm{P}_{k}(\mathrm{C})\right\}_{0 \leq k \leq r}$ of generators of $\mathrm{Q}_{n}(\mathrm{C})$, such that

$$
\mathrm{P}_{r}(\mathrm{C}) \supset \mathrm{P}_{r-1}(\mathrm{C}) \supset \cdots \supset \mathrm{P}_{1}(\mathrm{C}) \supset \mathrm{P}_{0}(\mathrm{C})
$$

Correspondingly we obtain for $j<r$ the sequence of the $(j+1)$-fold degenerate quadrics $\Sigma_{n-j-1}=\mathrm{Q}_{n}(\mathrm{C}) \cap \mathrm{P}_{n-j}(\mathrm{C})$, where $\mathrm{P}_{n-j}(\mathrm{C})$ is the polar space of $\mathrm{P}_{j}(\mathrm{C})$ with respect to $Q_{n}(\mathrm{C})$. In particular, if $j=r$, then Σ_{n-r-1} reduces to the generator $P_{r}(C)$. Thus one has a sequence

$$
\mathrm{Q}_{n}, \Sigma_{2 r}, \cdots, \Sigma_{r+1}, \mathrm{P}_{r}(\mathrm{C}), \cdots, \mathrm{P}_{1}(\mathrm{C}), \mathrm{P}_{0}(\mathrm{C}),
$$

such that

$$
Q_{n}(\mathrm{C}) \supset \Sigma_{2 r} \supset \cdots \supset \Sigma_{r+1} \supset \mathrm{P}_{r}(\mathrm{C}) \supset \cdots \supset \mathrm{P}_{1}(\mathrm{C}) \supset \mathrm{P}_{0}(\mathrm{C})
$$

The difference of any successive algebraic varieties of that sequence is homeomorphic to an algebraic open cell. That sequence then defines a subdivision of $Q_{2 r+1}(C)$ into algebraic open cells. These cells constitute the bases for the homology group $H_{*}\left(Q_{2 r+1}(C) ; Z\right)$. This homology group has no torsion coefficients and $\mathrm{KI}\left(\mathrm{P}_{j}(\mathrm{C}) \cdot \Sigma_{n-j}\right)=\mathrm{I}^{(1)}$.
(ii) n is even $(=2 r)$:

Consider in $Q_{n}(C)$ the following sequence of complex projective spaces

$$
\mathrm{P}_{r}(\mathrm{C}) \supset \mathrm{P}_{r-1}(\mathrm{C}) \supset \cdots \supset \mathrm{P}_{1}(\mathrm{C}) \supset \mathrm{P}_{0}(\mathrm{C})
$$

Every generator $P_{j}(C)$, of this sequence, defines in the usual manner a ($k+1$)-fold degenerate quadric $\Sigma_{n-j-1}=Q_{n}(C) \cap P_{n-j}(C)$.

If $j=r-\mathrm{I}$, then Σ_{n-j-1} reduces to two generators $\mathrm{P}_{r}(\mathrm{C}), \mathrm{P}_{r}^{\prime}(\mathrm{C})$, of different families, with $\mathrm{P}_{r-1}(\mathrm{C})$ as their intersection. The bases of $H_{*}\left(Q_{2 r}(\mathrm{C}) ; \mathrm{Z}\right)$ in this case are then formed by:

$$
\mathrm{Q}_{2 r}(\mathrm{C}), \Sigma_{2 r-1}, \cdots, \Sigma_{r+1}, \mathrm{P}_{r}(\mathrm{C}), \mathrm{P}_{r}(\mathrm{C}), \mathrm{P}_{r-1}(\mathrm{C}), \cdots, \mathrm{P}_{1}(\mathrm{C}), \mathrm{P}_{0}(\mathrm{C})
$$

We also have

$$
\begin{aligned}
& \mathrm{KI}\left(\mathrm{P}_{j}(\mathrm{C}) \cdot \Sigma_{n-j}\right)=\mathrm{I} \\
& \mathrm{KI}\left(\mathrm{P}_{r}(\mathrm{C}) \cdot \mathrm{P}_{r}^{\prime}(\mathrm{C})\right)= \begin{cases}\mathrm{I} & \text { if } j \neq r \\
\mathrm{o} & \text { if } r \text { is odd }\end{cases}
\end{aligned}
$$

(I) KI $(x \cdot y)$ denotes the Kronecker index of $x \cdot y$.
and

$$
\mathrm{KI}\left(\mathrm{P}_{r}(\mathrm{C}) \cdot \mathrm{P}_{r}(\mathrm{C})\right)=\mathrm{KI}\left(\mathrm{P}_{r}^{\prime}(\mathrm{C}) \cdot \mathrm{P}_{r}^{\prime}(\mathrm{C})\right)=\left\{\begin{array}{cll}
0 & \text { if } r \text { is odd } \\
\mathrm{I} & \text { if } r \text { is even. } .
\end{array}\right.
$$

But, since $Q_{n}(C)$ and $P_{n+1}(C)$ are oriented compact manifolds [2], then by the Poincare duality lemma [2], there exist isomorphisms

$$
{ }^{*} n+\mathrm{I}: \quad \mathrm{H}_{2 r}\left(\mathrm{P}_{n+1}(\mathrm{C}) ; \mathrm{Z}\right) \cong \mathrm{H}^{2(n+1-r)}\left(\mathrm{P}_{n+1}(\mathrm{C}) ; \mathrm{Z}\right),
$$

and

$$
{ }^{*} n: \quad \mathrm{H}_{2 r}\left(\mathrm{Q}_{n}(\mathrm{C}) ; \mathrm{Z}\right) \cong \mathrm{H}^{2(n-r)}\left(\mathrm{Q}_{n}(\mathrm{C}) ; \mathrm{Z}\right)
$$

Thus we are now in situation to construct f^{*} from the commutativity of the following diagram

$$
\begin{aligned}
& \mathrm{H}^{2(n-r)}\left(\mathrm{Q}_{n}(\mathrm{C}) ; \mathrm{Z}\right) \xrightarrow{f^{*}} \mathrm{H}^{2(n+1-r)}\left(\mathrm{P}_{n+1}(\mathrm{C}) ; \mathrm{Z}\right) \\
& *_{n} \| \mathbb{R} \\
& \mathrm{H}_{2 r}\left(\mathrm{Q}_{n}(\mathrm{C}), \mathrm{Z}\right) \xrightarrow{i_{*+1}} \mathrm{H}_{2 r}\left(\mathrm{P}_{n+1}(\mathrm{C}) ; \mathrm{Z}\right)
\end{aligned}
$$

where i_{*} is the group homomorphism of $\mathrm{H}_{2 r}\left(\mathrm{Q}_{n}(\mathrm{C}) ; Z\right)$ into $\mathrm{H}_{2 r}\left(\mathrm{P}_{n+1}(\mathrm{C}) ; Z\right)$ induced by the embedding $i: Q_{n}(C) C \mathrm{P}_{n+1}(\mathrm{C})$, as follows.

Let $x_{j} \in \mathrm{H}^{2(n-r)}\left(\mathrm{Q}_{n}(\mathrm{C}) ; \mathrm{Z}\right)$ corresponding to the constructed bases for $\mathrm{H}_{2 r}\left(\mathrm{Q}_{n}(\mathrm{C}) ; \mathrm{Z}\right)$ and let $h \in \mathrm{H}^{2}\left(\mathrm{P}_{n+1}(\mathrm{C}) ; \mathrm{Z}\right)$, then

$$
\left.\begin{array}{l}
f^{*}\left(x_{j}\right)=\left\{\begin{array}{rc}
h^{j+1} & \forall j \geq r+1 \\
2 h^{j+1} & j \leq r
\end{array}\right\} n=2 r+1, \tag{I}\\
f^{*}\left({ }_{j}\right)=\left\{\begin{aligned}
h^{j+1} & \forall j \geq r+1 \\
2 h^{j+1} & \forall j \leq r-1
\end{aligned}\right\} n=2 r . \\
f^{*}\left(x_{r}\right)=f^{*}\left(x_{r}^{\prime}\right)=h^{r+1}
\end{array}\right\}
$$

Combining (I) and (II) we get

$$
\begin{aligned}
f^{*}\left(x_{j}\right) & = \begin{cases}h^{j+1} & \forall j \geq r+1 \\
2 h^{j+1} & \forall j \leq r-1\end{cases} \\
f^{*}\left(x_{r}\right) & =h^{r+1}, \\
\left(x_{r}^{\prime}\right) & =h^{r+1} \quad \text { if } n=2 r .
\end{aligned}
$$

Furthermore,

$$
\operatorname{Ker}\left(f^{*}\right)= \begin{cases}0 & \text { if } n=2 r+1 \\ x_{r}-x_{r}^{\prime} & \text { if } n=2 r .\end{cases}
$$

Bibliography

[1] C. Ehresmann (1934) - Sur la topologie de certain espaces homogenes, "Ann. of Math.》, 35, 396-443.
[2] F. Hirzebruch (1966) - Topological methods in algebraic Geometry. Springer, Berlin.

