ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

MONIR S. MORSY

The construction of Gysin—Thom homomorphism Between the Cohomologies of Complex Quadric and the Complex Projective space with integer Coefficients

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.4, p. 476–479.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_62_4_476_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Geometria algebrica. — The construction of Gysin-Thom homomorphism Between the Cohomologies of Complex Quadric and the Complex Projective space with integer Coefficients. Nota di MONIR S. MORSY, presentata ^(*) dal Socio B. SEGRE.

RIASSUNTO. — La costruzione dell'omomorfismo indicato nel titolo viene effettuata poggiando su decomposizioni in celle di una quadrica e di uno spazio proiettivo nel campo complesso.

INTRODUCTION

Let $P_{n+1}(C)$ and $Q_n(C)$ denote, respectively, the complex (n + 1)dimensional projective space and the *n*-dimensional complex quadric. If $(z_0, z_1, \dots, z_{n+1})$ denote homogeneous complex coordinates on $P_{n+1}(C)$, then $Q_n(C)$ in $P_{n+1}(C)$ is given by the equation

$$\sum_{j=0}^{n+1} z_j^2 = 0.$$

We propose in this paper to explain the following

CONSTRUCTION. Given $Q_n(C)$ and $P_{n+1}(C)$, then we construct the Gysin-Thom homomorphism

$$f^*: H^{2(n-r)}(Q_n(C); Z) \to H^{2(n+1-r)}(P_{n+1}(C); Z)$$

by using cellular decompositions of $P_{n+1}(C)$ and $Q_n(C)$.

The paper is divided into two sections: $\S I$ is devoted for some preliminaries; the construction takes place in $\S 2$.

The numbers in square brackets refer to the bibliography at the end.

§ I. PRELIMINARIES [see e.g. I and 2]

DEFINITION 1. Let p and q be two distinct points in $P_{n+1}(C)$ having respective coordinates $(z_0, z_1, \dots, z_{n+1}), (z'_0, z'_1, \dots, z'_{n+1})$. p and q are said to be conjugate with respect to $Q_n(C)$ if $\sum_{i=0}^{n+1} z_i z'_i = 0$.

DEFINITION 2. The locus of all points conjugate to a given r-complex projective subspace $P_r(C)$ of $P_{n+1}(C)$ with respect to $Q_n(C)$ is an (n-r)-complex projective subspace $P_{n-r}(C)$ which of $P_{n+1}(C)$ is called the polar space of $P_r(C)$ with respect to $Q_n(C)$.

(*) Nella seduta dell'8 marzo 1975.

DEFINITION 3. If n = 2r or n = 2r + 1, the quadric $Q_n(C)$ contains complex projective spaces of dimension r and does not contain any complex projective space of dimension higher than r. These are called the generators for $Q_n(C)$.

We have to note that:

a) If b = 2r, the set of generators of $Q_n(C)$ constitutes two distinct families.

b) If n = 2r + 1, the set of generators of $Q_n(C)$ constitutes only one continuous family.

c) The intersection of two distinct generators $P_r(C)$ and $P'_r(C)$ of the same family is an (r-2s)-complex projective space, where s is an integer such that $r-2s \ge 1$. But if they belong to two different families, then their intersection will be an (r-2s-1)-complex projective space, where s is an integer such that $r-2s \ge 0$.

			r–even	r-odd
$d) P_r(C) \cap P'_r(C)$	of	the same family	one point in common	disjoint
		different families	disjoint	one point in common.

DEFINITION 4. Let $q \in Q_n(C)$ and let $P_n(C)$ be the polar plane of q with respect to $Q_n(C)$. $P_n(C) \cap Q_n(C)$ is the quadric cone $\sum_{n=1}$ having q as its vertex.

Given two distinct points q and $q' \in Q_n(C)$ with respective polar planes $P_n(C)$ and $P'_n(C)$ with respect to $Q_n(C)$. The central projection from q onto $P'_n(C)$ puts in (I - I)-correspondence $P'_n - (P_n(C) \cap P'_n(C))$ and $Q_n(C) - \Sigma_{n-1}$ which is then homeomorphic to an algebraic open cell.

Let $P_k(C)$ (k < r) be a generator of $Q_n(C)$ and $P_{n-k}(C)$ be its polar space with respect to $Q_n(C)$, then $P_k(C)$ is the vertex of a (k + 1)-fold degenerate quadric $\Sigma_{n-k-1} = Q_n(C) \cap P_{n-k}(C)$.

Let $q' \in \Sigma_{n-k-1}$ such that $q' \notin P_k(C)$ and let $P_{k+1}(C)$ be the generator of $Q_n(C)$ which contains $P_k(C)$ and q'. The polar space $P_{n-k-1}(C)$ of $P_{k+1}(C)$, with respect to $Q_n(C)$, intersects $Q_n(C)$ in a (k + 2)-fold degenerate quadric Σ_{n-k-2} . Every point of $\Sigma_{n-k-1} - \Sigma_{n-k-2}$ corresponds in a unique manner to a straight line in $P_{n-k}(C)$ which passes through q' and does not lie on $P_{n-k-1}(C)$. Thus $\Sigma_{n-k-1} - \Sigma_{n-k-2}$ is homeomorphic to an algebraic open cell.

§ 2. THE CONSTRUCTION

Let us first construct the cellular decomposition of each of $P_{n+1}(C)$ and $Q_n(C)$.

(1) The cellular decomposition of $P_{n+1}(C)$ goes as follows. One can find the following sequence $\{P_r(C)\}_{0 \le r \le n+1}$ of complex projective subspaces of $P_{n+1}(C)$ such that:

$$P_{n+1}(C) \supset P_n(C) \supset \cdots \supset P_1(C) \supset P_0(C)$$
.

477

The difference of any two successive projective subspaces constitutes an algebraic open cell. That sequence then defines a subdivision of $P_{n+1}(C)$ into algebraic open cells. These cells constitute the bases for the homology group $H_*(P_{n+1}(C); Z)$.

- (2) The cellular decomposition of $Q_n(C)$ is constructed as follows.
- (i) *n* is odd (= 2r + 1):

Let us consider a sequence $\{P_k(C)\}_{0 \le k \le r}$ of generators of $Q_n(C)$, such that

$$P_r(C) \supset P_{r-1}(C) \supset \cdots \supset P_1(C) \supset P_0(C)$$
.

Correspondingly we obtain for j < r the sequence of the (j + 1)-fold degenerate quadrics $\Sigma_{n-j-1} = Q_n(C) \cap P_{n-j}(C)$, where $P_{n-j}(C)$ is the polar space of $P_j(C)$ with respect to $Q_n(C)$. In particular, if j = r, then Σ_{n-r-1} reduces to the generator $P_r(C)$. Thus one has a sequence

$$Q_n, \Sigma_{2r}, \cdots, \Sigma_{r+1}, P_r(C), \cdots, P_1(C), P_0(C),$$

such that

$$Q_{n}(C) \supset \Sigma_{2r} \supset \cdots \supset \Sigma_{r+1} \supset P_{r}(C) \supset \cdots \supset P_{1}(C) \supset P_{0}(C).$$

The difference of any successive algebraic varieties of that sequence is homeomorphic to an algebraic open cell. That sequence then defines a subdivision of $Q_{2r+1}(C)$ into algebraic open cells. These cells constitute the bases for the homology group $H_*(Q_{2r+1}(C); Z)$. This homology group has no torsion coefficients and KI $(P_j(C) \cdot \Sigma_{n-j}) = I^{(1)}$.

(ii) n is even (= 2r):

Consider in $Q_n(C)$ the following sequence of complex projective spaces

$$P_r(C) \supset P_{r-1}(C) \supset \cdots \supset P_1(C) \supset P_0(C).$$

Every generator $P_j(C)$, of this sequence, defines in the usual manner a (k + 1)-fold degenerate quadric $\Sigma_{n-j-1} = Q_n(C) \cap P_{n-j}(C)$.

If j = r - 1, then \sum_{n-j-1} reduces to two generators $P_r(C)$, $P'_r(C)$, of different families, with $P_{r-1}(C)$ as their intersection. The bases of $H_*(Q_{2r}(C); Z)$ in this case are then formed by:

 $\mathbf{Q}_{2r}(\mathbf{C}), \mathbf{\Sigma}_{2r-1}, \cdots, \mathbf{\Sigma}_{r+1}, \mathbf{P}_{r}(\mathbf{C}), \mathbf{P}_{r}(\mathbf{C}), \mathbf{P}_{r-1}(\mathbf{C}), \cdots, \mathbf{P}_{1}(\mathbf{C}), \mathbf{P}_{0}(\mathbf{C}).$

We also have

$$KI (P_{j}(C) \cdot \Sigma_{n-j}) = I \qquad \text{if} \quad j \neq r$$
$$KI (P_{r}(C) \cdot P_{r}'(C)) = \begin{cases} I & \text{if} \quad r \text{ is odd} \\ 0 & \text{if} \quad r \text{ is even} \end{cases}$$

(1) KI $(x \cdot y)$ denotes the Kronecker index of $x \cdot y$.

and

$$\mathrm{KI}\left(\mathrm{P}_{r}(\mathrm{C})\cdot\mathrm{P}_{r}(\mathrm{C})\right) = \mathrm{KI}\left(\mathrm{P}_{r}'(\mathrm{C})\cdot\mathrm{P}_{r}'(\mathrm{C})\right) = \begin{cases} \mathrm{o} & \text{if } r \text{ is odd} \\ \mathrm{I} & \text{if } r \text{ is even.} \end{cases}$$

But, since $Q_n(C)$ and $P_{n+1}(C)$ are oriented compact manifolds [2], then by the Poincaré duality lemma [2], there exist isomorphisms

*
$$n + I: H_{2r}(P_{n+1}(C); Z) \cong H^{2(n+1-r)}(P_{n+1}(C); Z),$$

and

$${}^{*\!n}\colon \ \ H_{2r}\left({{\mathbf{Q}}_{n}}\left({\mathbf{C}} \right);{\mathbf{Z}} \right)\cong {{\mathbf{H}}^{2\left({n-r} \right)}}\left({{\mathbf{Q}}_{n}}\left({\mathbf{C}} \right);{\mathbf{Z}} \right).$$

Thus we are now in situation to construct f^* from the commutativity of the following diagram

$$\begin{aligned} &H^{2(n-r)}\left(\mathbb{Q}_{n}\left(\mathcal{C}\right);Z\right)\overset{f^{*}}{\longrightarrow}H^{2(n+1-r)}\left(\mathbb{P}_{n+1}\left(\mathcal{C}\right);Z\right)\\ &\ast_{n}\left\|\right\| &\left\|\right\| \ast_{n+1}\\ &H_{2r}\left(\mathbb{Q}_{n}\left(\mathcal{C}\right),Z\right)\overset{i_{*}}{\longrightarrow}H_{2r}\left(\mathbb{P}_{n+1}\left(\mathcal{C}\right);Z\right) \end{aligned}$$

where i_* is the group homomorphism of $H_{2r}(Q_n(C); Z)$ into $H_{2r}(P_{n+1}(C); Z)$ induced by the embedding $i: Q_n(C) \hookrightarrow P_{n+1}(C)$, as follows.

Let $x_j \in H^{2(n-r)}(Q_n(C); \mathbb{Z})$ corresponding to the constructed bases for $H_{2r}(Q_n(C); \mathbb{Z})$ and let $h \in H^2(P_{n+1}(C); \mathbb{Z})$, then

(I)
$$f^*(x_j) = \begin{cases} h^{j+1} & \forall j \ge r+1 \\ 2 h^{j+1} & j \le r \end{cases} n = 2r+1,$$

$$\begin{cases} f^{*}(_{j}) = \begin{cases} h^{j+1} & \forall j \ge r+1 \\ 2 & h^{j+1} & \forall j \le r-1 \\ f^{*}(x_{r}) = f^{*}(x_{r}^{'}) = h^{r+1} \end{cases} n = 2 r$$

Combining (I) and (II) we get

$$f^{*}(x_{j}) = \begin{cases} h^{j+1} & \forall j \ge r+1 \\ 2 h^{j+1} & \forall j \le r-1 \end{cases},$$

$$f^{*}(x_{r}) = h^{r+1},$$

$$(x_{r}') = h^{r+1} & \text{if } n = 2r.$$

Furthermore,

Ker $(f^*) = \begin{cases} 0 & \text{if } n = 2r + 1 \\ x_r - x'_r & \text{if } n = 2r. \end{cases}$

BIBLIOGRAPHY

- [1] C. EHRESMANN (1934) Sur la topologie de certain espaces homogenes, «Ann. of Math.», 35, 396-443.
- [2] F. HIRZEBRUCH (1966) Topological methods in algebraic Geometry. Springer, Berlin-