ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Fulvio Ricci

Su alcuni quozienti dell'algebra di Fourier centrale di un gruppo di Lie compatto

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.4, p. 451–454. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_62_4_451_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Teoria dei gruppi. — Su alcuni quozienti dell'algebra di Fourier centrale di un gruppo di Lie compatto. Nota di Fulvio Ricci, presentata (*) dal Socio B. Segre.

SUMMARY. — In this Note we give a proof for the particular case of the group SU (2) of a local characterization of the central Fourier algebra $A_{\mathbb{C}}(G)$ of a compact Lie group G in terms of the Fourier algebra of a maximal torus of G. The proof for the general case will appear elsewhere [5]. We derive a result on local symbolic calculus for $A_{\mathbb{C}}(G)$ which partially extends a theorem of M. P. and P. Malliavin.

1. Se G è un gruppo di Lie compatto e connesso, si definisce A (G) come lo spazio delle funzioni su G la cui serie di Fourier

$$\sum_{\lambda \in \hat{G}} d(\lambda) \operatorname{tr}(\hat{f}(\lambda) U^{\lambda}(g))$$

è assolutamente convergente. \hat{G} è l'insieme delle classi di equivalenza delle rappresentazioni unitarie irriducibili di G, U^{λ} è una rappresentazione nella classe $\lambda \in \hat{G}$,

$$\hat{f}(\lambda) = \int_{G} f(g) U^{\lambda}(g^{-1}) dg$$

e d (λ) è la dimensione della rappresentazione U^{λ} .

A(G) è un'algebra di Banach per il prodotto puntuale con la norma

$$||f||_{\mathbf{A}} = \sum_{\lambda \in \hat{G}} d(\lambda) \operatorname{tr}(|\hat{f}(\lambda)|)$$

dove $|\hat{f}(\lambda)|$ è la radice quadrata non negativa di $\hat{f}(\lambda) \hat{f}(\lambda)^*$ (vedi [3]). Con $A_C(G)$ indichiamo la sottoalgebra di A(G) costituita dalle funzioni invarianti per automorfismi interni di G, tali cioè che f(gg') = f(g'g) per ogni $g, g' \in G$. Tali funzioni sono dette centrali perché sono le funzioni di A(G) appartenenti al centro dell'algebra di gruppo $L^1(G)$

Le funzioni di A_C(G) sono della forma

$$f(g) = \sum_{\lambda \in \hat{G}} a_{\lambda} \chi_{\lambda}(g)$$
 , $\sum d(\lambda) |a_{\lambda}| < \infty$,

dove χ_{λ} è il carattere della rappresentazione $U^{\lambda}\text{,}$

$$\chi_{\lambda}(g) = \operatorname{tr} U^{\lambda}(g)$$
,

$$a_{\lambda} = \int_{G} f(g) \chi_{\lambda}(g^{-1}) dg$$
.

(*) Nella seduta del 16 aprile 1977.

e

Si ha

$$||f||_{\mathbf{A}} = \sum_{\lambda \in \widehat{\mathbf{G}}} \mathbf{d}(\lambda) |a_{\lambda}|.$$

Se T è un toro massimale di G, le funzioni di $A_C(G)$ sono univocamente determinate dalla loro restrizione a T. T è un gruppo abeliano, isomorfo a $(\mathbf{R}/2~\pi~\mathbf{Z})^l$, dove $l=\mathrm{rank}~G$. Scopo di questo lavoro è considerare $A_C(G)$ come un'algebra di funzioni definite su T e studiarla in rapporto alla struttura di gruppo abeliano di T.

2. Un esempio è fornito dal gruppo

SU (2) =
$$\left\{ \left(\frac{\alpha}{\beta} \frac{\beta}{\alpha} \right) | \alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1 \right\}$$

Un toro massimale è

$$T = \left\{ \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix} = g_t \mid t \in [-\pi, \pi) \right\}.$$

Le rappresentazioni di SU (2) si possono parametrizzare con i naturali e, identificando l'elemento g_t col numero reale t, si ha

$$\chi_n(t) = \frac{\sin{(n+1)t}}{\sin{t}} = \begin{cases} 2\sum_{k=0}^{(n-1)/2} \cos{(2 k+1)t} & \text{se } n \text{ è dispari} \\ 1 + 2\sum_{k=1}^{n/2} \cos{2 kt} & \text{se } n \text{ è pari} \end{cases}$$

(vedi [1]).

Si ha d(n) = n + 1, per cui $A_{C}(SU(2))$ consiste delle funzioni

(I)
$$f(t) = \sum_{n=0}^{\infty} a_n \frac{\sin(n+1)t}{\sin t} , \quad \sum_{n=0}^{\infty} (n+1)|a_n| < \infty.$$

Tali funzioni sono pari, in conseguenza del fatto che g_t e g_{-t} sono coniugati in SU(2).

Derivando la serie nella (1) termine a termine, si ha

$$\sum_{n=1}^{\infty} a_n \frac{(n+1)\cos(n+1)t\sin t - \sin(n+1)t\cos t}{\sin^2 t}.$$

La serie

$$\sum_{n=1}^{\infty} a_n \left[(n+1) \cos (n+1) t \sin t - \sin (n+1) t \cos t \right]$$

converge ad una funzione in A (T), per cui, se t_0 non è un multiplo di π , f è derivabile nell'intorno di t_0 e la sua derivata coincide in un intorno di t_0 , la cui chiusura non contenga multipli di π , con una funzione in A (T).

Viceversa, sia f una funzione definita in un intorno di $t_0 \notin \pi \mathbf{Z}$, la cui derivata sia in quell'intorno la somma di una serie di Fourier assolutamente convergente. Esiste dunque $\varphi \in A(T)$ uguale a f' in U, essendo U un intervallo $[t_0 \longrightarrow \in , t_0 + \in]$, con $\in <$ dist $(t_0, \pi \mathbf{Z})$.

Sia $\psi \in C'(T)$ con supp $\psi \subset U$ e $\psi = 1$ su un intorno V di t_0 contenuto in U. Allora $\tilde{\varphi}(t) = \varphi(t) \psi(t) - \varphi(-t) \psi(-t)$ è una funzione dispari che coincide con f' su V. Si ha

$$\tilde{\varphi}\left(t\right) = \sum_{n=1}^{\infty} \alpha_n \sin nt$$
 , $\sum_{n=1}^{\infty} |\alpha_n| < \infty$.

Quindi su V, f coincide con la funzione

$$h(t) = a_0 - \sum_{n=1}^{\infty} \frac{\alpha_n}{n} \cos nt.$$

Ma $\parallel \cos nt \parallel_{A(SU(2))} = \parallel \frac{1}{2} (\chi_n - \chi_{n-2}) \parallel = n$, per cui

$$||h||_{A(SU(2))} \le |a_0| + \sum_{n=1}^{\infty} |\alpha_n| < \infty.$$

Abbiamo quindi il seguente

THEOREMA I. Sia f una funzione definita in $(a,b) \subset (0,\pi)$; f si estende and una funzione in $A_C(SU(2))$ se, e soltanto se, f è derivabile e f' si estende ad una funzione in A(T).

3. Questo risultato si estende ad un gruppo di Lie compatto e connesso qualunque.

Sia g l'algebra di Lie di G. Allora $g = z(g) \oplus g_1$, dove z(g) è il centro di $g \in g_1$ è semisemplice. Se h è una sottoalgebra di Cartan di g_1 , $h \oplus z(g) = t$ è l'algebra di Lie di un toro massimale T.

Sia Δ^+ il sistema delle radici positive di \mathbf{g}_1 associato ad $\mathbf{h}; \Delta^+$ individua, per mezzo della forma di Killing, un sottoinsieme $\{\alpha_1, \cdots, \alpha_l\}$ di \mathbf{h} , e quindi un insieme finito di campi vettoriali invarianti su T. Di conseguenza, se $B \subset \Delta^+$, è definito un operatore differenziale invariante L_B di ordine |B| su T, dato dal prodotto $\prod_{i \in B} \alpha_i$, che non dipende dall'ordine dei fattori.

Un elemento g di T si dice regolare se $g = \exp_G x$ e il normalizzatore di x in g è t. Gli elementi regolari formano un aperto denso in T.

Il seguente teorema si troverà dimostrato in [5]:

Theorema 2. Sia f una funzione definita su un aperto U di T connesso, e la cui chiusura sia tutta costituita da elementi regolari. Allora f è la restrizione di una funzione in $A_C(G)$ se, e soltanto se, per ogni $B \subset \Delta^+$ $L_B f$ è la restrizione di una funzione in A(T).

4. Sia G un gruppo localmente compatto, e sia E un chiuso di G. A (E) è l'algebra delle restrizioni ad E degli elementi di A (G).

Una funzione complessa φ definita su un intervallo I della retta opera su A (E) se, per ogni $f \in A$ (E) con f (E) \subset I, si ha $\varphi \circ f \in A$ (E).

Se E è un intervallo di \mathbf{R} e φ opera su A (E), allora φ è analitica reale [6]. Con la stessa tecnica usata in [4], possiamo dimostrare che, se G è un gruppo di Lie ed E ha parte interna non vuota, le funzioni che operano su A (E) sono analitiche reali. Sia infatti H un toro di dimensione uno in G; allora l'algebra di Fourier di H , A (H), consiste esattamente nelle restrizioni ad H delle funzioni di A (G) (vedi [2]). Possiamo supporre che l'identità di G sia interna ad E. Allora se $f \in A$ (E) $f_{|\mathbf{H} \cap \mathbf{E}|} \in A$ (H \cap E); ne segue che, se φ opera su A (E), essa opera anche su A (H \cap E) ed è perciò analitica reale.

Per l'algebra $A_C(G)$ di un gruppo compatto semisemplice la situazione è diversa. È stato dimostrato in [4] che le funzioni di classe C^6 operano su $A_C(SU(3))$. Enunciamo qui un teorema di carattere locale in una situazione più generale, rimandando per la dimostrazione a [5].

Theorema 3. Sia G un gruppo di Lie compatto semisemplice, T un suo toro massimale ed E un chiuso di T costituito da elementi regolari. Supponiamo che rank $G < (\dim G + 2)/4$. Se φ è una funzione di variabile reale di classe $C^{r+\alpha}$ con $r + \alpha > n/2$, allora φ opera su $A_C(E)$.

Ricordiamo che $C^{r+\alpha}(\mathbf{R})$ è lo spazio delle funzioni su \mathbf{R} la cui derivata r-esima è lipschitziana di ordine α .

Osserviamo che tutti i gruppi di Lie semplici compatti soddisfano la condizione richiesta dal teorema.

BIBLIOGRAFIA

- [1] R. COIFMAN e G. Weiss (1971) Analyse Harmonique Non-Commutative sur certains Espaces Homogenes, «Lecture Notes», 242, Springer.
- [2] C. HERZ (1972) Problems of extrapolation and spectral synthesis on groups, «Lecture Notes», 266, Springer.
- [3] E. HEWITT e K. A. Ross (1970) Abstract Harmonic Analysis, vol. II, Springer.
- [4] M. P. e P. MALLIAVIN, (1972) Calcul symbolique sur l'algèbre de Wiener centrale de SU (3), « Lecture Notes », 266, Springer.
- [5] F. RICCI, Local properties of the central Wiener algebra on the regular set of a compact Lie group. Di prossima pubblicazione sul « Bulletin des Sciences Mathématiques ».
- [6] W. RUDIN (1967) Fourier Analysis on Groups, Interscience.