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Algebra. — On the maximal subgroups of the Mathieu groups I: 
M^. Nota di Rudy J. L ist, presentata(,) dal Socio G. Z appa.

R iassun to . — I sottogruppi massimali del gruppo di Mathieu M24 furono determinati 
da Choi [3] nel 1967: egli raccolse una gran quantità di informazioni sul sistema di Steiner 
S (5 , 8 , 24). Qui si mostra che la quantità di informazioni sulla geometria di S (5 , 8, 24)  
necessaria per determinare i sottogruppi massimali di M24 è molto minore di quella raccolta
in [3].

I. In t r o d u c t io n  a n d  n o t a t io n

In [4], [5] Choi determined the maximal subgroups of M == M24 through 
an intricate analysis of the geometry of the Steiner system S == S (5,8,24); 
M is the automorphism group of S [14]. The character table of M was first 
determined by Frobenius [9], and a copy of it can be found there or in [3]. 
In what follows elements of M with cycle types 28 I8 , 212, 3e i6, 38 are refer­
red to as 2X, 22 , 3X , 32 respectively, H \K  denotes an extension of H by 
K , H \K  denotes a split extension of H by K , C*. denotes a cyclic group of 
order k> and ~ Cm\ C rr Notation which is not explained follows [13]. 
We also make use of the fact that primitive groups of degree less than or equal 
to 20 have been determined [11] and that the fixed point set of a 2X is an 8 [12].

As an M-module V =  V24 (2) has an invariant subspace ^  of dimension 
12. The nonzero elements of consist of (i) 759 vectors with 8 nonzero coor­
dinates, (ii) 2576 vectors with 12 nonzero coordinates, (iii) 759 vectors with 
16 nonzero coordinates, and (iv) the vector with 24 nonzero coordinates. The 
nonzero elements of correspond to subsets of £2 =  {i,**«, 24} in the 
following way: If the i th , / th , • • -, kth coordinates of v e  ^  are the nonzero
coordinates of v> then v corresponds to {i , j , • • -, k} <= Q. The subsets of Q 
corresponding to the elements (i) are the blocks of a Steiner system S on £2. A 
subset of Q corresponding to an element of (i), (ii), or (iii) is called an 8, 12, 
or a 16 respectively. The preceding observations were first made by Car­
michael.

Define the length of a vector v in V to be the number of nonzero coor­
dinates of v. If x is a nonidentity element of the M-module V/^, it is easy 
to see that the minimal length of a vector in x is 1 , 2 , 3, or 4. and that if the 
minimal length of a vector in x is 1 , 2, or 3, x contains a unique vector 
minimal length, while if the minimal length is 4 , x contains precisely six 
vectors of length 4. Furthermore, if the minimal length of vectors in x is 4, 
the union of the sets corresponding to any two distinct vectors of minimal 
length is an 8. It follows easily that any intransitive subgroup of M is 
contained in a conjugate of one of the following: (i) M ^ » , where A (z) —

(*) Nella seduta del 16 aprile 1977.
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=  {i ,• • -, i}, i < 4 , or (ii) M(E), where E is 8 , 12 or the fixed point set of a 3. 
These observations and this method of determining the intransitive subgroups 
of M are due to Conway [6].

Using standard methods it is also easy to show that the only proper sub­
groups of M primitive on ß  are conjugates of PSL2 (23). For example, it is 
not difficult to show, using Sylow’s theorem, that a proper subgroup H of M 
acting primitively on ß  has the same order as the order of PSL2 (23), and then 
an argument entirely similar to that used to prove Satz 6.15 [10] shows that 
H is isomorphic to PSL2 (23). That M contains such an H is proved in [14] 
and follows from the facts: The linear transformations ot : x  —>x -f- 1, and
ß : x  -> — xr1, x  e ^23) generate PSL2 (23); a and ß fix a Steiner system S 
constructed on the points of the projective line with 24 points. That all such H 
are conjugate in M is clear, for: Elements of order 23 and 11 are selfcentralizing 
in M. Hence the groups

Hx , y , z  =  [x , y  , z : x23 =  y 11 =  z2, (x , y) ~  C23 , [y> 2) -  c n)

form a single conjugate class in M by Sylow’s theorem. By the classification 
of the subgroups of PSL2 (q) [8], C23 is a maximal subgroup of PSL2 (23), 
so HXiV'Z ~  PSL2 (23).

To complete a determination of the maximal subgroups of M, it is neces­
sary only to determine the subgroups imprimitive on ß. With the method 
developed by Conway and outlined above it is possible to obtain some infor­
mation about the imprimitive subgroups of M [6]. Here using methods alter­
native to those used by Choi and Conway a determination of the imprimitive 
subgroups of M is given.

II.

In this section we exhibit four subgroups G1, G2, G3, G4 of M which 
act imprimitiyely on ß  with block lengths 4 , 8 , 1 2 , 3  and orders 210.33.5 , 
210»32-7 > 27.33-5*ii, and 23.3.7 respectively.

(1) Let E be an 8. Then M[E] ~ W, an elementary abelian group of 
order 16 acting regularly on ß — E, and M(E) ~ W \G L 4 (2) [12]. Hence a 
Sylow 2-subgroup of M is isomorphic to a Sylow 2-subgroup of GL5 (2). Exa­
mination shows that a Sylow 2-subgroup of M contains precisely two elementary 
abelian groups of order 64. One of these has 6 orbits of length 4 on ß, and the 
other has 3 orbits of length 8. Thus if H is any elementary abelian group 
of order 64 in M, H is M-characteristic in any Sylow 2-subgroup containing it. 
It follows that two elements of H are conjugate in M if and only if they are 
conjugate in NM(H).

Now suppose that H is an elementary abelian subgroup of M of order 
64 with 6 orbits A4,- • - , A6 of length 4. Then M(Â  2̂  M(a(4)), because M is 
4-transitive, and M(A.)Ç N =  Nm (H). Also, because M is 5-transitive, 
is transitive on ß-—A{. Hence N is an imprimitive, group of block length 4. 
Now |M[A(4)1 J — 26.3.5, so |M(A)(4) J =  29.32.5. Since M(A/) is the stabilizer of a
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block in N represented on the blocks Al5 • • -, Ae, it follows that |N | =  210.33.5. 
It is easy to show that there are no characters corresponding to induced cha­
racters of possible proper subgroups of M containing N properly. Hence N is a 
maximal subgroup ofM. Denote N by G4. G4 was first determined by Todd [12].

R e m a r k . It is routine to show that H contains 45 elements of type 24 
and 18 of type 22. Since G4 is transitive on 22-involutions, it follows that if 
x  is 22 in H, then | CGl (x) | =  29.3.5. =  |CM(Y) | , i.e., the centralizer of an 
element of type 22 is a subgroup of a conjugate of Gj.

(2) M is transitive on the set of 8’s, because they are blocks of a Steiner 
system S. Given an 8 E it is not hard to show that there are precisely 30 8’s 
disjoint from E and that M(E) acts transitively on this set of 30 objects. Hence 
M is transitive on the 3795 ordered triples of mutually disjoint 8’s. If H is the 
stabilizer of some such ordered triple (X, Y , Z) , | H | — 210.32.7. It follows 
that H must be transitive on Q. Again using the characters of M it is not 
difficult to show that H is maximal in M. Denote H by G2.

R e m a r k . Let K be the kernel of imprimitivity of H. As K is a subgroup 
of M(E), where E is some 8, it follows that K ~ V \(W \P S L 2 (7)), where V 
and W are both elementary abelian of order 8. Take P <= K, with P ~ PSL2 (7). 
It is obvious, then, that 32 | j NH (P) | . Hence 3 | | CH (P) | . But if a is an 
element of type 32, | CM (cr) | =  3. | PSL2 (7) | . Hence CM (o) H. Then 
since [H : CM ([a) ] =  27, and since the centralizer in M of elements of order 7 
has order 2.3.7, it follows (by applying Sylow’s theorem to H forthe prime 7) 
that NM ((cr)) c H ,

(3) There are 247.23 i2’s in so if F is a 12, the stabilizer M(F) of F 
must have order at least 26.33.5.i i  and must be isomorphic to a subgroup 
of S12. the subgroups of S12 are known, and it follows that M(F) must be iso­
morphic to M12, the Mathieu group of degree 12, and that M is transitive on 
the set of I2,s. It is obvious that M is transitive on the 1288 unordered pairs 
of disjoint I2’s, so that M(F) is contained in an overgroup M(F) with index 2. 
It follows that M(F) is maximal. Moreover M(f> is isomorphic to Aut (M12) 
[14]. Denote M(F) by G3.

(4) In [5] generators are exhibited (denoted here by m and n) of a sub­
group of M satisfying the relations nP =  n3 =  {mnf.  Further m is 22, and 
n is 32. It is straightforward to verify that [m , n) satisfies the relations requi­
red in order that [m , n) be isomorphic to PSL2 (7) [7]. Since m and n act 
semi-regularly on £2, it follows immediately that [m , n) is imprimitive on 
Q with blocks of length 3. Computing from the character table ofM we find 
that there are 7 solutions of the equation # •y  == z> where x  and y  are 22 and 
32 respectively, and z is a fixed element of order 7. It follows that any sub­
group [x , y  : x  is 22 , y  is 32 , x -y  has order 7) of M is conjugate to (m >n).

Obviously [m , n) cannot be contained in a conjugate of G0  i =  1 , 2, 3.  
Anticipating section III, it follows that [m , n) is maximal in M. Denote 
[m,n)  by G4. The existence of G4 is first noticed in [5].
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III.

In this section we show that an imprimitive subgroup of M is contained 
in a conjugate of one of Gi , f =  I , • • - , 4.

(1) a) Let H be an imprimitive subgroup of M with blocks of length 8, 
and suppose that the kernel of imprimitivity K is transitive on each block. 
Then the blocks are 8’s, and H is contained in a conjugate of G2.

b) Let H be an imprimitive subgroup of VI of block length 12. Then the 
blocks are i2 ,s and H is contained in a conjugate of G3.

c) Let H be a non-solvable imprimitive subgroup o fM .o f  block lenght 4. 
Then H is contained in a conjugate of Gx or G3.

Proof, a) Since K has orbits of length 8 , K ç  M(E) for some 8 E. Thus 
the blocks are 8’s, and H is contained in a conjugate of G2.

b) In this case H has just two blocks, and so it is obvious that the kernel 
of imprimitivity must be transitive on each block. The rest of the proof is 
similar to the proof of a).

c) Let K be the kernel of imprimitivity. If H is non-solvable, then 
H/K is non-solvable, because K must be solvable. Since S5 is the only non- 
solvable subgroup of S6 with a subgroup of index 24, it follows that either 
K I o r K =  I and H == S5. If H =  S5, then an A5 Ç  H must have orbits 
of length 12, so H ç  G3.

Suppose that K 7  ̂ 1, and let N Ç  K be a minimal normal subgroup 
of H. Clearly N is elementary abelian 2-group. If the orbits of N have length 
2, it follows that either (i) N =  (<?}, where a is 22, or (ii) nonidentity elements 
of N are 2 lf and distinct nonidentity elements of N have disjoint fixed point 
sets (since M contains just two types of involutions). In case (i) H c  CM (a) G, 
where G is a conjugate of G^ In case (ii) H must permute the fixed point 
sets of the nonidentity elements of N among themselves. Since the fixed point 
set of a 2j is an 8, H is contained in a conjugate of G2. But then, since H is 
nonsolvable, the image of imprimitivity on orbits of N is a transitive non- 
solvable group of degree 8, so 7 | | H | . This contradicts the assumption 
that H can be represented as an imprimitive group of block length 4, since the 
image of imprimitivity over blocks of length 4 must be a subgroup of S6. 
Therefore case (ii) is impossible.

Suppose that the orbits of N have length 4, and denote them by IT , 
i — I ,•••,_ 6. We want to show that these are the blocks of imprimitivity of a 
conjugate of G4 (introduced in section II). This will follow if we show that 
IT U r ?. is an 8 for any pair of distinct integers i and j, 1 <  z <  j  <  6, for 
the following reasons: Given Tx and a 6 Q — there is a unique 8 b incident 
with I \  U {a} by the definition of S (5 , 8,24), so that b <— ^  is a uniquely 
determined IT. By 4-transitivity of M on fì we may assume that 1^ is in 
the discussion of section II where G4 is introduced. Since nonsolvable groups 
of degree 6 are 2-transitive, it suffices to show that U IT is an 8 for some T?.
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Assume that I \  U IT is not an 8 for 2 < 7  <  6. Let b be an 8 incident 
with the elements of I \  and let m denote max {| b D IT | , 2 < j  <  6}. There 
are three cases to consider, viz., m =  1 , 2 ,  or 3.

Case m — 3; We may assume that | T2 | =  3 by 2-transitivity of H 
on the orbits of N. But then by the transitivity of N on T2, a (b D T2) 7  ̂Æ O T2 
for some a e N. Hence cr (b) 7  ̂3 , while | a (Æ) D b | >  6. This contradicts 
the fact that 5 points of Q, determine a unique 8. Hence case m =  3 is 
impossible.

Case m =  2: Assume that | b fi T*. | =  2, while | b D IT | =  x, some y 7  ̂k. 
Again it is easy to see (because of the transitivity of N on T*. and IT) that there 
must be two distinct 8’s which intersect in at least 5 points of £2. Hence if
1 b n Vh I =  2, then j b D IT | =  2, for some uniquely determined j  7  ̂k. 
But then since H must preserve intersection properties of the Steiner system, 
and since H^p acts transitively on E =  {T2, • • - , T6}, this just means that 
this representation of H(Fl) must be imprimitive of block length 2. But this 
is impossible, because | S | =  5, and 2 ^ 5 .  Hence case m =  2 is impossible.

Case m =  1: In this case b =  Tj U {a , ß , y , 8} where a , ß , y , 8 lie in
pairwise distinct orbits of N disjoint from Vv Suppose these are T2 ,• • - , T5. 
By transitivity of N on each IT, it follows that each element òf each IT,
2 <  i <  5, is in some 8 containing Tv Given x e  r „  there is a unique 8 c
incident with r x U{^}. Since m — 1 0 , some j , 2 < j  <  5. But
then there are again two distinct 8*s incident with a common 5-subset of Q. 
Hence case m =  1 is impossible.

Thus U r ? is an 8 , I <  i < j  <  6 , and so H is a subgroup o f  a conju­
gate of Gv

REMARK. It is easy to show, using the fact that involutions of M are 2X 
or 22, that a nontrivial elementary abelian 2-group of M with no orbit of length 
4 or greater has order 2 or 4.

I
(2) Let H be a nonsolvable imprimitive subgroup oflSHof block length 3 

with kernel of imprimitivity K.
a) I f  K ^ i , H ç  Nm ((a)) , where cr is 32.
b) I f  K =  I , H is contained in a conjugate of G4.

Proof, a) Let N Ç K be a minimal normal subgroup of H. Then N must 
be elementary abelian of order 3, since subgroups of order 9 of M have an 
orbit length 9 (this can be most easily seen by using the fact that M contains 
elements of order 3 only of types 3t or 32).

b) H must have a faithful transitive representation of degree 8. The 
only nonsolvable groups of degree 8 which have a subgroup of index 24 are 
PSL2 (7) , PGL2 (7), and A z (2 ), the affine group of dimension 3 over F2. 
( A , ( 2 > - V , ( 2 ) < G L b (2) ) .

H cannot be isomorphic to PGL2 (7), because M contains two classes of 
elements of order 7, while PGL2 (7) contains only one.
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Suppose that H is isomorphic to A3(2). Then V3(2) must have orbits 
of length 4 prj8 on £2, and these must be blocks for a system of imprimi- 
tivity in either case. This is the situation of III (i) a) or c). It is easy to show 
though, that A3(2) cannot have such representation in any case.

Hence H is isomorphic to PSL2 (7). | H [x] | =  7, where Tre £2, and so
involutions and elements of order 3 in H are 22 and 32 respectively. ThusH 
is contained in a conjugate of G4.

(3) I f  H is an imprimitive nonsolvable subgroup of M of block length 6, 
then H is contained in a conjugate of Gx or G3.

Proof. Let K be the kernel of imprimitivity of H. Then K is nonsol­
vable. Let N s K ,  and suppose that N is a minimal normal subgroup of H. 
Then N must be simple; either N ^  A6 or N ^  Ae. Suppose first that N ~ A6. 
No involution of M is centralized by a group of order 32. Since | Aut (N) | =  
=  4. I A, I, if 3 I J H / N I , then 3 | j Cm (N) | , so that an involution is N would 
be centralized by a group of order 32. Therefore either j H | =  4. | A6 | or
1 H I =  8 - IA6 |. In either case H/N must be represented imprimitively on 
the set of orbits of N, so that H may be represented as an imprimitive group 
of block length 12. Hence H is contained in a conjugate of G3.

Now suppose that N is isomorphic to A5. If H acts imprimiti vely on the 
orbits of N, it may be represented as an imprimitive group of block length 12. 
Thus we assume that H/N acts primitively on the orbits of N, so either H/N ~ 
~ A4 or H/N ~ S4. Since Aut (A5) ~ S5 and A4 has no subgroup of index 2, 
either H ~ N xB  or H ~ (N XB)\C2, where B ~ A4. The elements of order
2 in B are 22, because they commute with an element of order 5. Hence a 
4-group in B has orbits of length 4 on £2 and is normal in H. Therefore H is 
contained in a conjugate of Gv

(4) I f  H is a nonsolvable imprimitive subgroup o f M o f  block length 2, then 
H is contained in one of G^, z =  1 , 2 , 3 .

. j
Proof. Let K be the kernel of imprimitivity of H. If K ^  1, either 

] K j =  2, whence H £  CM (cr), where a is 22, and H is contained in a conju­
gate of G4; or I K | =  4 and H is a subgroup of a conjugate of G2 as in III (1)
c). Thus we may assume that K =  1. If the representation of H on the set 
of blocks is imprimitive, H may be represented on £2 as an imprimitive group 
of block length 4 ,8  , 12, or 6. As H is nonsolvable, it is easy to see that either 
III (1) a) , b), c) or III (3) implies. Thus we may assume that H is primitive 
on the set of blocks. The only primitive group of degree 12 which has a sub­
group of index 24 is PGL2 (11) [11]. If H is isomorphic to PGL2 (11), a PSL 2(i 1) 
in H must have two orbits of length 12, so H is a subgroup of a conjugate of Gs.

(5) No solvable group is a maximal subgroup of M.

Proof. Suppose that H is a solvable maximal subgroup of M. No maximal 
intransitive subgroup is solvable. Thus H must be imprimitive, since 24 is 
not a prime power. A minimal normal subgroup N is elementary abelian,
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and the orbits of N are blocks of imprimitivity. Hence N is either a 2-group 
or a  3-group. If N is a 3-group, N =  (a), where <7 is 3 2 . In this case H is 
contained in a conjugate of G2.

If N is a 2-group, N has orbits of length either (i) 2, (ii) 4, or (iii) 8.
(i) If N has 12 orbits of length 2, either N =  (a ) ,  where <7 is 2 2, or 

N is a 4-group, nonidentity elements of N are 23, and distinct nonidentity 
elements have disjoint fixed point sets. As in the proof of III (1) c) H must 
be contained in a conjugate of Gx or G2.

(ii) If N has orbits of length 4, the image of imprimiti vity must be 
imprimitive on the set of 6 blocks, because primitive groups of degree 6 are 
nonsolvable. But then H can be represented as an imprimitive group of block 
length 8 in which the kernel of imprimiti vity is transitive on each block, or as 
imprimitive group of block length 12. Thus III (1) a) or III (1) b) applies.

(iii) III (1) a) applies.
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