ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Angelo Alvino

Formule di maggiorazione e regolarizzazione per soluzioni di equazioni ellittiche del secondo ordine in un caso limite

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.3, p. 335–340. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_62_3_335_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni a derivate parziali. — Formule di maggiorazione e regolarizzazione per soluzioni di equazioni ellittiche del secondo ordine in un caso limite (*). Nota di Angelo Alvino, presentata (**) dal Socio C. Miranda.

SUMMARY. — We give an imbedding theorem for the weak solutions of the Dirichlet problem (2) when f(x) is in certain Lorentz spaces: the main result (see Teorema 2) ensures the continuity of the weak solution when f(x) is in the Lorentz space L (n/2, 1); from this fact, via a duality argument, we improve known results for the weak solutions of the equation (4).

Si consideri il seguente operatore ellittico del secondo ordine

$$Lu = -\sum_{i=1}^{n} \partial_{x_{i}} \left(a_{ij}(x) \, \partial_{x_{j}} u \right) + c(x) \, u$$

a coefficienti $a_{ij}(x) = a_{ji}(x)$, reali, misurabili e limitati, definiti in un aperto limitato Ω di \mathbb{R}^n con $n \geq 3$, tali che si abbia

(I)
$$\sum_{i,j=1}^n a_{ij}(x) \, \xi_i \, \xi_j \geq |\xi|^2, \qquad c(x) \geq 0.$$

Consideriamo il problema di Dirichlet

(2)
$$\begin{cases} Lu = f & \text{in } \Omega \\ u = 0 & \text{su } \partial \Omega \end{cases}$$

essendo f(x) una funzione appartenente allo spazio $L^{2n/(n+2)}(\Omega)$: per soluzione debole del problema (2) si intende una funzione u(x) appartenente allo spazio di Sobolev $H_0^1(\Omega)$, tale che

$$a(u,\varphi) = \sum_{i,j=1}^{n} \int_{\Omega} \left[a_{ij}(x) \, \partial_{x_i} \, \varphi \partial_{x_j} \, u + c(x) \, u \varphi \right] \, \mathrm{d}x = \int_{\Omega} f \varphi \, \mathrm{d}x \quad \forall \varphi \in C_0^{\infty}(\Omega).$$

Indichiamo con $f^*(s)$ il riordinamento di $f(x): f^*(s)$ è una funzione non crescente definita nell'intervallo $(0, \infty)$, tale che, per ogni t > 0

$$\min \{s: f^*(s) > t\} = \min \{x: |f(x)| > t\}.$$

^(*) Lavoro eseguito nell'ambito del Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni del C.N.R.

^(**) Nella seduta del 12 marzo 1977.

Sussiste il seguente risultato la cui dimostrazione è dovuta a G. Talenti (cfr. [6], Teorema 1): se v(x) è la soluzione del problema

(3)
$$\int_{0}^{\infty} -\Delta v = f^{*} \left(C_{n} |x|^{n} \right) \quad in \quad \Omega^{*}$$

$$v = 0 \quad su \quad \partial \Omega^{*}$$

avendo indicato con Ω^* la sfera di \mathbb{R}^n con centro nell'origine la cui misura coincide con quella di Ω , si ha $v(x) \ge u^*(C_n|x|^n)$, essendo $u^*(s)$ il riordinamento $di \ u \ (x)$. Tale risultato viene applicato in [6] (cfr. Teorema 2) per determinare le migliori costanti per alcune maggiorazioni a priori relative alle soluzioni deboli del problema (2): un primo risultato della seguente Nota consiste nel ricavare una maggiorazione a priori, con relativa migliore costante, delle soluzioni deboli del problema (2) in un caso limite non considerato in [6]. Da tale risultato si prende spunto per giungere ad un teorema di regolarità: precisamente, detto G l'operatore che ad ogni f(x) associa la soluzione u(x)del problema (2), è noto che, se $\partial\Omega$ è sufficientemente regolare, G è lineare e continuo da $L^p(\Omega)$ con p>n/2 allo spazio $C_0^{0,\lambda}(\overline{\Omega})$ delle funzioni holderiane con un opportuno indice λ , mentre, se $2 n/(n+2) \le p < n/2$, G è lineare e continuo da $L^{p}(\Omega)$ a $L^{p^{**}}(\Omega)$ essendo $1/p^{**}=1/p-2/n$; il risultato di regolarità cui accennavamo consiste nell'individuare una classe di funzioni, contenuta in ogni $L^p(\Omega)$ con p < n/2 e contenente ogni $L^p(\Omega)$ con p > n/2, tale che G è lineare e continuo da tale classe allo spazio delle funzioni $C_0^0(\overline{\Omega})$. Tale risultato permette inoltre di precisare alcuni teoremi di inclusione per soluzioni deboli dell'equazione

$$(4) Lu = \mu$$

essendo µ una misura di Radon:

DEFINIZIONE I (cfr. [5], Definition 9.1). Se Ω è H_0^1 -ammissibile (2), una funzione $u \in L^1(\Omega)$ è una soluzione debole dell'equazione (4) che si annulla su $\partial\Omega$, se

$$\int_{\Omega} u \mathbf{L} \varphi \, \mathrm{d} x = \int_{\Omega} \varphi \, \mathrm{d} \mu$$

per ogni funzione $\varphi \in H_0^1(\Omega) \cap C^0(\overline{\Omega})$ tale che $L\varphi \in C^0(\overline{\Omega})$.

1. Cominciamo con l'introdurre alcuni spazi funzionali. Sia f(x) una funzione misurabile, definita in Ω , e $f^*(s)$ il suo riordinamento; poniamo

(5)
$$f(t) = \frac{1}{t} \int_{0}^{t} f^{*}(s) ds = \frac{1}{t} \sup \left\{ \int_{E} |f(x)| dx : \text{mis } E = t \right\}.$$

⁽I) $C_n = \prod^{n/2}/\Gamma$ (I + n/2) è la misura della sfera di \mathbb{R}^n di raggio unitario; si dimostra facilmente che il riordinamento di f^* ($C_n |x|^n$) è f^* (s).

⁽²⁾ Per tale nozione si veda [5] Definition 6.2.

Diciamo che la funzione f(x) appartiene allo spazio di Lorentz L (p,q) (3) se è finita la quantità

(6)
$$||f||_{p,q} = \begin{cases} \left(\int_{0}^{+\infty} [f(t) t^{1/p}]^{q} \frac{dt}{t} \right)^{1/q} & 1 0} f(t) t^{1/p} & 1$$

La (6) è una norma rispetto alla quale L (p,q) è uno spazio di Banach. Ricordiamo che L (p,p) coincide con L^p (Ω) , mentre L (p,∞) è lo spazio delle funzione debolmente L^p che indicheremo anche con il simbolo L^p_{deb}. Sussiste il seguente risultato:

LEMMA I. Sia Φ un generico funzionale lineare e continuo su L(p, 1); esiste allora una e una sola funzione $g \in L(p', \infty)$, con p' esponente coniugato di p, tale che

(7)
$$\Phi(f) = \int f g \, dx \qquad \forall f \in L(p, 1);$$

di più spazi $[L(p, 1)]^*$ e $L(p', \infty)$ sono equivalenti: è quindi possibile dotare $L(p', \infty)$ della seguente norma

$$|||g||| = ||\Phi_g||_{[L(p,1)]^*}$$

essendo Φ_q il funzionale (7).

Dimostrazione. Accenniamo brevemente alla dimostrazione (cfr. anche [2], Teorema 6). Sia χ_E la funzione caratteristica dell'insieme $E \subseteq \Omega$; si ha, posto $\Phi (\chi_E) = \phi (E)$

(8)
$$|\varphi(E)| = |\Phi(\chi_E)| \le ||\Phi|| ||\chi_E||_{p,1} = ||\Phi|| \frac{p^2}{p-1} (\text{mis } E)^{1/p}.$$

Per il Teorema di Vitali-Radon-Nikodym esiste una funzione integrabile g(x) tale che

(9)
$$\varphi(E) = \int \chi_E g \, \mathrm{d}x.$$

Dimostriamo che $g \in L(p', \infty)$; per semplicità supporremo $g(x) \ge 0$ (4): per la (5) si ha

$$t\bar{g}\left(t\right) = \sup\left\{\int \chi_{\mathbf{E}} g \, \mathrm{d}x : \min \mathbf{E} = t\right\}$$

(3) Per maggiori notizie relative a tali spazi rimandiamo a [3, 4].

⁽⁴⁾ Se g non verifica tale ipotesi si prendono in considerazione le funzioni $g^+ = \max [g, o]$ e $g^- = \max [-g, o]$, osservando che $g = g^+ - g^-$.

e quindi, per le (8) e (9)

$$t\bar{g}(t) \leq \|\Phi\| \frac{p^2}{p-1} t^{1/p}$$

da cui l'asserto. Per quel che riguarda la seconda parte del lemma rimandiamo a [4] (cfr. Teorema 6.13).

Introduciamo ora i seguenti spazi già considerati in [1]: diciamo che una funzione u(x), misurabile, appartiene allo spazio $X_s(\Omega)$, con $0 \le s \le 1$, se è finita la quantità

$$[u]_s = \sup \frac{u^* (C_n |x|^n)}{\left| \lg \frac{r_0}{|x|} \right|^s}$$

essendo $r_0 = (\min \Omega/C_n)^{1/n}$. La topologia che si intende introdotta in $X_s(\Omega)$ (5) è quella indotta dalla seguente convergenza

$$u_k \to u$$
 in $X_s(\Omega) \iff [u_k - u]_s \to 0$.

Siamo ora in grado di dimostrare il seguente:

TEOREMA 1. Se $f(x) \in L(n/2, v)$, la soluzione del problema (2) appartiene allo spazio $X_{1-1/v}(\Omega)$ e si ha

(10)
$$[u]_{1-1/v} \le n^{-1-1/v} C_n^{-2/n} ||f||_{n/2, v}.$$

Dimostrazione. In base al risultato di Talenti descritto nell'introduzione ci si può limitare a dimostrare la (10) per il problema (3). La soluzione di tale problema è

$$v(x) = n^{-2} C_n^{-2/n} \int_{C_n|x|^n}^{\min \Omega} t^{-1+2/n} f(t) dt;$$

per la diseguaglianza di Holder si ha

$$v(x) \le n^{-2} C_n^{-2/n} \left[\int_{C_n|x|^n}^{\min \Omega} [\bar{f}(t) \ t^{2/n}]^v \frac{\mathrm{d}t}{t} \right]^{1/v} \left[\int_{C_n|x|^n}^{\min \Omega} \frac{\mathrm{d}t}{t} \right]^{1-1/v} \le$$

$$\le n^{-1-1/v} C_n^{-2/n} \|f\|_{n/2, v} \left[\lg \frac{r_0}{|x|} \right]^{1-1/v}$$

da cui l'asserto.

OSSERVAZIONE I. La costante che compare nella (10) è la migliore possibile; con ciò intendiamo dire (si confronti in proposito l'introduzione di [6]) che $(n^{-1-1/v} C_n^{-2/n})$ è l'estremo superiore del rapporto $[u]_{1-1/v}/||f||_{n/2,v}$ al variare

(5) Per maggiori notizie su tali spazi rimandiamo a [1].

di f(x) in L (n/2, v), di L nella classe di operatori che verificano le (1) e dell'aperto Ω , con u soluzione del problema (2). Per verificare tale circostanza, detta $f_k(s)$ la funzione $s^{-2/n}$ troncata superiormente al valore k e $v_k(x)$ la soluzione del problema (3) con termine noto $f_k(C_n|x|^n)$, è sufficiente far vedere che il rapporto $[v_k]_{1-1/v}/\|f_k\|_{n/2,v}$ tende a $(n^{-1-1/v}C_n^{-2/n})$ al divergere di k.

2. Dal Teorema I si ricava che, se $f \in L(n/2, I)$, la soluzione del problema (2) è limitata: dimostriamo che essa è continua almeno nei punti interni. Adottando le notazioni di [5], indichiamo con $I(x_0, \rho)$ la sfera di raggio ρ e centro x_0 e poniamo $\Omega(x_0, \rho) = \Omega \cap I(x_0, \rho)$. Sia x_0 interno a Ω : prendiamo ρ tale che $\Omega(x_0, 8\rho) = I(x_0, 8\rho)$. Poniamo u = v + w, essendo v(x) la soluzione in $H^1_0(\Omega(x_0, 8\rho))$ dell'equazione Lv = f: che tale soluzione esista discende dalla coercitività della forma $a(\cdot, \cdot)$; si ha allora Lw = 0 in $\Omega(x_0, 8\rho)$ intendendo dire con questo (cfr. [5], Definition I.3) che $a(w, \rho) = 0$ per ogni $\varphi \in C_0^\infty(\Omega(x_0, 8\rho))$. Indicata con $\omega(w, \rho)$ l'oscillazione della funzione w(x) in $\Omega(x_0, \rho)$ si ha (cfr. [5] Lemma 7.3)

(II)
$$\omega(w, \rho) \leq \eta \omega(w, 4 \rho)$$

essendo y una costante minore di 1. Inoltre per il Teorema 1 è

(12)
$$\omega(v, \rho) \leq 2 \sup_{\Omega(x_0, 8\rho)} |v| \leq 2 n^{-1-1/v} C_n^{-2/n} ||f||_{n/2, 1}$$

dove con $||f||_{n/2,1}$ si intende la norma in L(n/2,1) della restrizione della f(x) al dominio $\Omega(x_0, 8 \rho)$; la (12) diventa quindi

(13)
$$\omega(v, \rho) \leq F(\rho)$$

essendo $F(\rho)$ una funzione infinitesima al tendere di ρ a zero. Si ha quindi per le (11) e (13)

(14)
$$\omega\left(u,\rho\right) \leq \eta\omega\left(w,4\rho\right) + F\left(\rho\right) \leq \eta\omega\left(u,4\rho\right) + (\eta+1)F\left(\rho\right).$$

Dalla (14) si ha $\lim_{\rho \to 0} \omega(u, \rho) \le \eta \lim_{\rho \to 0} \omega(u, 4 \rho)$, da cui, essendo $\eta < 1$, $\lim_{\rho \to 0} \omega(u, \rho) = 0$ e quindi l'asserto.

Possiamo pertanto enunciare il seguente risultato relativo ad una soluzione locale dell'equazione Lu = f, intendendo con tale locuzione una funzione $u \in H^1_{loc}(\Omega)$ tale che

$$a(u, \varphi) = \int_{\Omega} f \varphi \, dx \qquad \forall \varphi \in C_0^{\infty}(\Omega).$$

TEOREMA 2. Sia u(x) una soluzione locale dell'equazione Lu = f con $f \in L(n/2, 1)$; allora u(x) è continua in Ω .

OSSERVAZIONE 2. Come nel più volte citato lavoro di Stampacchia si può giungere con la regolarizzazione fin sulla frontiera di Ω , facendo l'ulteriore ipotesi che Ω sia H_0^1 -ammissibile: basta tener presente che, in tale ipotesi, vale ancora la (11), anche se $x_0 \in \partial \Omega$ (cfr. [5], Lemma 7.4).

Se quindi Ω è H^1_0 -ammissibile l'operatore di Green G è lineare e continuo dallo spazio L(n/2, 1) allo spazio $C^0_0(\overline{\Omega})$ e si ha

(15)
$$\max_{\bar{\Omega}} |G(f)| \le n^{-2} C_n^{-2/n} ||f||_{n/2,1}.$$

D'altra parte se u(x) è soluzione di (4) si ha, per ogni ψ continua in $\overline{\Omega}$

$$\int_{\Omega} u \psi \, dx = \int_{\Omega} G(\psi) \, d\mu ;$$

per la (15) si ha allora

$$\left| \int\limits_{\Omega} u \psi \, \mathrm{d}x \right| \leq n^{-2} \, \mathrm{C}_n^{-2/n} \|\psi\|_{n/2,1} \int |\, \mathrm{d}\mu\,|$$

e quindi, essendo $C^0(\overline{\Omega})$ denso in $L(n/2, 1)^{(6)}$, il funzionale $\Phi(\psi) = \int u\psi \, dx$ è lineare e continuo su L(n/2, 1); per il Lemma I u(x) appartiene allo spazio $L_{\text{deb}}^{n/(n-2)}$ e, inoltre, è

(16)
$$|||u||| \le n^{-2} C_n^{-2/n} \int |d\mu|.$$

Possiamo quindi enunciare il seguente

TEOREMA 3. Se μ è una misura di Radon a variazione limitata, l'equazione $Lu = \mu$ ammette una soluzione u(x) che appartiene allo spazio $L_{\rm deb}^{n/(n-2)}$; vale inoltre la (16): la costante che vi compare è la migliore possibile.

OSSERVAZIONE 3. Il Teorema 9.1 di [5] assicura che la soluzione dell'equazione $Lu = \mu$ e, quindi, in particolare dell'equazione Lu = f con $f \in L^1$, appartiene allo spazio di Sobolev $H_0^{1,q}(\Omega)$ per ogni q < n/(n-1); ciò implica che $u \in L^p$ per ogni p < n/(n-2): il Teorema 3 precisa quindi, almeno per quel che riguarda il grado di sommabilità della u(x), il risultato di Stampacchia.

BIBLIOGRAFIA

- [I] A. ALVINO (1977) Un caso limite della diseguaglianza di Sobolev in spazi di Lorentz, « Rend. Acc. Sci. fis. mat., Napoli » (in corso di stampa).
- [2] G. G. LORENTZ (1950) Some new functional spaces, «Ann. of Math.», 51, 37-55.
- [3] R. O'NEIL (1963) Convolution operators and L (p,q) spaces, «Duke Math. J.», 30, 129–142.
- [4] R. O'Neil (1968) Integral transforms and tensor products on Orlicz spaces and L (p, q) spaces, « J. Analyse Math. », 21, 1–276.
- [5] G. STAMPACCHIA (1965) Le problème de Dirichlet pour les équations elliptiques du second ordre a coéfficients discontinus, «Ann. Inst. Fourier, Grenoble », 15, 189–258.
- [6] G. TALENTI (1976) Elliptic equations and rearrangements, «Ann. Scuola Norm. Sup. Pisa, Cl. Sci.», 3, 697–718.
 - (6) Per una dimostrazione di tale fatto si veda [2], Teorema 2.