
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Yuichi Kitamura, Takaŝi Kusano
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Equazioni differenziali ordinarie. — Vanishing Oscillations of 
Solutions of a Class of D ifferential Systems with Retarded Argument. 
Nota di Y uichi Kitamura e T arasi Kusano, presentata <*> dal Socio 
G. Sansone.

RIASSUNTO. — Si dànno condizioni sufficienti perché tutte le traiettorie oscillatorie 
del sistema differenziale x' (t) =  p  (t) y  (t) , y' (t) =  /  ( t , x (g (t))) tendano a zero quando 
t  -> 00.

i. Introduction

This paper is concerned with systems of differential equations of the form

I x ’ (t) =  p  (f) y  (f) ,

} j / ( f )  = /( / ,* (* (< ) ) ) ,

where p (ft) and g  (t) are continuous on [a , 00) and /  ( t , x) is continuous on 
[a , 00) x (— 00 ,00). In addition, it will be assumed throughout that the 
following conditions hold:

(a) p  (ft) ^  o, with p (t) not identically zero on any infinite subinterval 
of [a ,00);

(b) g ( f ) ^ t , lim g  (t) =  00;
t —> 00

(c) I /  ( t , x) j ^  co ( t , j x  I ) on [a , 00) x (— 00 ,00), where co (/ , r) is a 
continuous function on [a , 00) x [o , 00) which is nondecreasing 
in r  and such that co ( / ,  r)jr is nonincreasing in r.

If in particular p  (t) >  o on [a , 00), then the system (A) is equivalent to 
the second order scalar equation

(B) ( j ^ y d ( t ) J = = f f f , x ( g ( t ) ) ) .

In what follows our attention will be restricted to solutions {pc (f) , y  (fj) 
of (A) which exist on some fay [T , 00) and satisfy

sup {\x  (£)| +  \ y  (f)| : t ^  T'} >  o for any T 'S ^ T .

Such a solution is termed oscillatory if each of its components is oscillatory 
in the usual sense, that is, if it has arbitrarily large zeros.

Recently, conditions for all solutions of (A) to be oscillatory have been 
found by Vareh, Gritsai and Se velo [4] and by the present authors [ 1 ].

(*) Nella seduta del 12 marzo 1977.
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The objective of this paper is to study the asymptotic behavior of oscillatory 
solutions of (A). Sufficient conditions will be given which guarantee that 
all oscillatory solutions (x it) , y  if)} of (A) vanish asymptotically in the sense 
that ^  if) —> o and y  if) -> o as t  —>■ 00. When specialized to the scalar equa
tion (B), our results include those of Singh [3] and Kusano and Onose [2].

2. The case

00

j  p  (f) dt < 00
a

We begin by examining the differential system (A) in which p  (f) sati
sfies the condition

00

J  p  if) dt <  00.
a

The following notation will be used throughout this section:
00

71 0) =  j  P 0) d j..
t

Lemma i . Assume that

co

00

j ' 7T if) 6 ) it , i) dt <  OO .

I f  {x (t) , y  (f)} is a solution of (A) defined on [T , 00), then

x  if) =  O (1) as t -> 00 and p  if) y  if) e L1 [T , 00) .

Proof. Let t0 ^  T  be such that t 0 =  inf {g if) : t ^  t0} ^  T. By com
bining

t

(2) 0  0)1 ^  \x Oo)| + J p ( s )  I j  0)1 ds ,
to

t

(3) \y  0)1 ^  I y  Oo)| +  J  «  0 , 0  (g  0)) l)  d s ,
t0

which follow from (A), we have
t s

(4) 00)1 ^  Ix  Oo)I +  Oo) \y  Oo)| +  jp(s)Ja>(<r,  \ x ( g ( ct))|)
0̂ 0̂t

+  J t c 0 ) « 0 »  0  C^O))!) d* , t ^ t o ,

da di*
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where a is a positive constant. To show that x  (t) =  O  ( 1)  as t -> c o  consider 
the function

u if) =  max {1 , sup \x (V)|} .

We may suppose that | x  (/) | >  1 for some t >  t0. Then, tx >  t 0 can be 
chosen so that

(5) u (t) =  sup |;r (T)| for t ^ t x .
t ^ s ^ t

Take t2 >  ^  so large that ^  (t) ^  ^  for t ^  t2 and
00

(6) J* t: (t) co (/ , 1) dt 5̂ J  .
h

Using (4), (5) and the condition (c), we obtain
£

u (t) ^  a f -  j  n (s) (ù (s , u (g (s))) d^
0̂

t

=  b +  j' TZ (s) (ù (s , u (g (s))) d j

h
t

fg b +  u(f)  tu  (s) co (s , 1) ds , t ^  t2 ,

where b is a positive constant. In view of (6) this implies u (t) Sk 2 b for
and so x  (t) — O (1) as t 00. Multiplying both sides of (3) by p  (t)>

integrating it from t0 to 00 and noting that | x  (f) | ^  c , t ^  t0, for some 
c ^  I , we söe that

00 00

j p  00 Iy  0 0 I dt  =  ^ (*0) \ y  (to)I +  * j 71 (0  (* » 0  dt  »

which shows ^  (£) y  (t) e L1 [T , 00).
The main result of this section is the following

T heorem  i. Let {x (t) , y ( f ) }  be an oscillatory solution of (A).

(i) Suppose that (1) holds. Then, x  (t) =  0(1) as t -> 00.
(ii) Suppose that

00

(7) j" ùì (i , tz (g (t))) di <  00.

x (t) — o (1) T (0  =  o (1) as t  00.
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Proof. Let {x (f) , y  (fj} be an oscillatory solution of (A) defined on 
[T, 00). Take =  T so that t0 =  inf {g (t) : t  ^  t0} ^  T.

(i) Suppose (1) holds. Then, p (t) y  (f) e L1 [T , 00) by Lemma 1, 
and so from the first equation of (A) we have

t

x  00 =  X (t0) +  J  p  (0 y  (s) ds
to

OO OO

=  x ( t 0) +  j  p  (s)y (s) ds — j ’p  (s)y (s) ds 
i0 t

for t ^  t0. Since x (f) is oscillatory by hypothesis, we must have

(8)

and this yields

OO

X (to) +  j  p  (s) y  (s) ds =  o , 
to

(9) x( t )  =  — I p( s )  y  (s) ds ,
t

t ^ t Q.

T hat x  (f) =  0(1) as t -> 00 is a consequence of (9).

(ii) Suppose (7) holds. Since (7) implies (1), it follows that #(7) =  0(1) 
as t —> 00. Actually, it can be shown that x  (7) =  O (tu (t)) as / -> o o .  Sub
stituting (3) in (9), we find

OO s

\x  (0 | ^  n (t) \ y  (*„)| +  j p  (s) J  cù (a , \x (g  (ór))|) der d,r
t to

t

=  TC O' ) \ y  (/f0)| +  n ( * ) f  w ( s  > \ x  ( g  (0) 1)
to

OO

+  j*7T (0  W (j , | ^ ( ^ ( 0 ) | ) d ï ,  t ^ t 0 ,
t

which yields
t

(10) \x(t)\ ln ( t ) ^ \ y  (/0)| +  J  o> (s , \x (g (0)|) ds
to

OO

+  (0“1 j  *  (0 w ( s  > \ x  ( g  (0) 1) d j > t ^ t 0 .
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Suppose to the contrary that \x(t )\ ln( t)  is unbounded and let 

v (f) =  max {1 , sup [\x (a*)|/tc (s)]} .
Tq

There exist tx , t2 , tz such that t0 <  tx <  <  tB,

( ” ) » 0) =  sup [ |#  (i)|/7T (i)] , t ^ t lt
h^s^t

(12)

and

03)

ou

J  (ù ( s  , TC ( g ( s ) ) ) d s ^ - ,
4

1-2

\y(h)\ +  » (4) j  <* (-f. (i))) di ^  ~  y (V3) .

Observing that the right hand side of (10) is an increasing function of t and 
using (1 i)-(i 3), we see that for t ^ t z

t% t

v ( t ) < \ y  (/0)| +  v fe ) J «  O' , Tr (g (■?))) ds +  v (t) f  w (s , tc (g (s))) di'

to
OO

+  n 00“1 J 71 (s) v 0 )  0  . TC (■*■))) di'
«

OO

^  è  » (0  +  TC (Y)“1 J  t c  (s) v (s) (ù (s , t c  (g (i))) di' .
t

Consequently,!
OO

n {t) v (f) ^  2 tu (a) (s) co (a , tt (g (.5*))) d^ , t ^  ts ,
Jt

from which it follows readily that

sup [tu (a) v (a)] ^  2 sup [71 (s) v (a)] • (Ù (s , n (g (s))) d^ , t ^  tz,
«

or
00

^  2 J  to (i , TC (£■<»)) di-, t ^ t x .

This contradiction proves that # (£) =  O ( tu (/)) as t -> 00.
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In view of this property of x  (t) and (7) we see that f  ( t , x  (g (i))) 
e L1 \t0 ,00). Hence, from the second equation of (A) we get

t

y  0) =  y  Oo) + f f ( s , x  (g (•*•))) ds
to

00 00

=  y  (to) +  j f  C*. * (g CO)) ds — I /  (s , x (g  0))) ds .
to t

Using the fact that y  (t) is oscillatory, we have

(h ) y ( Q  +  y  ( y , x {g {s))) às =  0 ,
<0

and thus we conclude that

00

C15) y ( 0  =  — j f ( s’>x(g(s ) ) )ds ,  t ^ t 0.
t

Therefore, y  (t) =  o (1) as 00. This completes the proof of Theorem 1.

Exam ple  J. Consider the system

^  \ x ' =  r 3/2 (i +  sin (In t)) y

\ ÿ  =  ■—■ (3/2) t~x \x  |1/a sgn x  +  2 r~3/a (1 — cos (In i)) .

Here we can take

Tc (t) =  t~l12 and cù ( t , r) =  (3/2) Z-1 r 1/2 +  4 t~3/2.

It is easily verified that the condition (7) is satisfied, so that by Theorem 1 
■—(ii) all oscillatory solutions of (16) vanish asymptotically. Actually, (16) 
has an oscillatory solution

( x  (f) =  t- 1 (1 +  sin (In t))2,

( y  (f) ~  t~l12 (2 cos (In 0  ■— sin (In /) — 1)

with this asymptotic property.
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00

3. T he ca se  J  p  (t) dt  =  00
a

We now turn to the differential system (A) in which p (t) is subject 
to the condition

00

J p  (f) d/ =  00 . 
a

The following notation will be used:

t

P ( t ) = f j ( s ) d s .
a

L emma 2. Assume that

00

(17) 00.

Then, every solution {x (t) , y  (’f )} of (A) has the property'.

x  (t) =  O (P (£)) <3 ; ^  (7 )  =  O (1) as t —► 00 .

Proof. Let (t) , (/)} be defined on [T , 00) and let t0 P  T be such 
that t 0 =  inf {g (l) : t ^  /0} ^  T. From (2) and (3) we obtain

t

1*091 ^  I*(b! +  p (0 b (*o)l +  P (0 j  “ ^ . I* b e ))I ) dj 

for t ^  /0, which gives
t

(18) bOOI/P ( i ) ^ a  +  j  (ù(s , b  b e ) ) |)  df,
«0

where <2 is a positive constant. Defining

^  (f) =  max {1 , sup [\x (Y)|/P (s)]}
t 0<;ŝ £

and applying the same type of argument that was used to prove Lemma 1, 
we easily conclude from (18) that u(t)  is bounded, that is, * ( 0  =  o  (P (0) 
as t  —> 00. There is a constant c ^  1 such that \x ( t ) \ ^  cV (t) for t ^  T.
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Using this inequality in (3), we have
t

I y  (01 ^  \y  (*0)l +  -c j  <ù ( s , P (g (s))) ds , t ^ t 0 ,
tQ

which shows that y  if) — O (ï) as t —> 00.
We now state and prove the main result of this section.

Theorem 2. Let {x if) , y  (t)} be an oscillatory solution of (A).

(i) Suppose that (17) holds. Then, y  (f) — o (ï) as / —* 00.
(ii) Suppose that

00

(19) P (t) <0 ( t , 1) At <  00 .

Then, x  if) =  o (1) and y  if) =  o (1) as t 00.

Proof. Let {pc (f) , y  (/)} be an oscillatory solution of (A) defined on 
[T , 00). Choose t0 ^  T  so that t 0 =  inf {g (t) : t t0} ^  T.

(i) Suppose (17) holds. By Lemma 2, x  if) =  O (P (t)) as t - ^ o o ,  
so that f i t , x  (g (/))) e L1 [t0 , 00). Integrating the second equation of (A) 
and noting that (14) holds, we conclude that y( f )  admits the expression (15), 
and hence y  it) =  o (1) as t -> 00.

(ii) Suppose (19) holds. Since (19) is stronger than (17), we see that
y  (f) =  0(1) as t —> 00. Substituting (15) in (2), we have

t 00

(20) \x (01 ^  \x (4)1 +  { P 0) J  W 0  , \x (g (or))I) d<7 ck
«

t 00

^ \ x  (#o)| +  [  p (j) W (s , \x O  (j)).|) d j +  P (t) f  w (s , |*  O  0 ))|)
«o «

for t ^ t 0. On the basis of (20) we shall show that x  if) =  O (1) as t —> 00. 
Suppose the contrary. Then, defining

v if) — max {1 , sup \x  (•?)]} , 

we can find tx , /2 , tz such that t0 <  tx <  t% <  t 3 , and

(21)

(22)

& (0 =  sup I X (s) I ,
OO

I P (i*) co (j , 1) dj* fg — ,
J A

h
\ * ( t o ) l + v ( t 2) j  P (s) to (j , 1) dj* — v (/3) .

t0

(23)
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It is a m atter of easy computation to derive from (2o)-(23) the following 
inequality oo

v (f) ^  2 P (f) j  v (s) co (s , i) ds for t ^  /3 .
£

From this it follows that
oo

or

sup [v (s)IP (/)] s; 2 sup [v (/)IP (V)] • P (s) a> (s , i) ds ,

OO

I ^  2  P ( s )  O) ( s  } i )  Ô.S , t ^ t 3 ,

t

which is a contradiction. Therefore, we must have x  (t) =  O (i) as t —> oo.
Let c ^  I be a constant such that | (/) | ^  £ for t ^  T. Using (15)

and this inequality, we have
00 00 00

J P 0) \y  0)1 ds ^  f  P(s) J  «  » I* {g 0 ))|) da ds
0̂ 0̂ 5

OO

^  c j  P 0 ) <» 0  . 0  ds ,
*0

and thus p (f) y  (t) G L1 |70,00). If we integrate the first equation of (A) 
and notice that (8) holds on account of the oscillation of x  (V), then we con
clude that x  (f) admits the expression (9), and therefore x  (f) =  0 (1) as 
t  00. The proof of Theorem 2 is thus complete.

Example 2. Consider the system

l x ' (Z) =  3 (1 +  sin (In t ) f y  (/) ,
(24) I

\ y ' 00 — [x 1/3 0^) *— (x +  cos (In /) +  sin (ln /) +  sin (ß In t) ) ] ,

where a and ß are positive constants with ß 1. Here we can take

P (f) =  t and co ( t , f)  =  (rllB -f- 4) .

If a >  2, then (19) is satisfied, so that by Theorem 2—(ii) every oscillatory 
solution of (24) vanishes asymptotically as t  -> 00. If  a =  2, then (19) is 
violated, and (24) possesses an oscillatory solution

■ ( * ( / )  =  (1 +  sin (kU))3,
(25) I

( y  (f) “  l ' ’1 cos (In t) ,

not vanishing asymptotically as /-> o o . We observe that the condition (17) 
is satisfied and the solution (25) justifies the assertion of Theorem 2—(i).
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