ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Olusola Akinyele

Restrictive Stability of the non-linear Abstract Cauchy Problem

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.3, p. 316–320. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_62_3_316_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni differenziali ordinarie. — Restrictive Stability of the non-linear Abstract Cauchy Problem. Nota di Olusola Akinyele, presentata (*) dal Socio G. Sansone.

RIASSUNTO. — L'Autore dà condizioni sufficienti per la stabilità restrittiva e la stabilità restrittiva asintotica del problema di Cauchy.

INTRODUCTION

In this paper we shall continue our study of the stability criteria of the abstract non-linear Cauchy Problem begun in [1] and [2]. We consider the Cauchy Problem:

(I)
$$\frac{\mathrm{d}u}{\mathrm{d}t} = \mathrm{A}(t) u + f(t, u) \cdots u(t_0) = u_0 \in \mathrm{D}(\mathrm{A}(t_0))$$

where $f \in C(R^+ \times Y, Y)$ and Y is a Banach space.

In [3] the notion of restrictive stability which is of practical interest in certain situations was first introduced and sufficient conditions were given for such a concept to hold for the differential system

(2)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x) \quad , \quad x(t_0) = x_0$$

where $f \in C$ $(R^+ \times R^n, R^n)$. In this paper as a consequence of main global results obtained in [1] and [2] we give sufficient conditions for the restrictive stability and restrictive asymptotic stability of a self-invariant set $M \subset Y$, with respect to the abstract Cauchy Problem (1).

MAIN RESULTS

We shall assume that for each $t \in \mathbb{R}^+$, A(t) is a linear operator on Y with D(A(t)) depending on t. We also assume the existence of solutions $u(t, t_0, u_0)$ of the Cauchy Problem (1) for all $t \ge t_0$, a solution of (1) being a strongly differentiable function $u(t) \in D(A(t))$ which satisfies (1) for all $t \ge t_0$.

The following general results were obtained in [1] and [2] respectively:

LEMMA 2.1. Assume that

- (i) $V \in C(R^+ \times Y, R)$ and V(t, u) is Lipschitzian in u and $Y_0 \subset Y$ is, open;
 - (*) Nella seduta del 12 febbraio 1977.

- (ii) the set $E \subset Y_0$ is such that $E \subset Y_0$ and $H \subset \partial E$ where ∂E is the boundary of E;
- (iii) $\alpha \in C(R^+, R)$ is such that for $(t, u) \in R^+ \times H$, $V(t, u) \ge \alpha(t)$;
- (iv) $u_0 \in E$ and $V(t_0, u_0) < \alpha(t_0)$;
- (v) For each $t \in \mathbb{R}^+$, all h > 0, the operator $\mathbb{R}[h; A(t)]$ exists as a bounded operator defined on Y and for each $u \in \mathbb{Y} \lim_{n \to \infty} \mathbb{R}[h; A(t)] u = u$;
- (vi) $g \in C(R^+ \times R, R)$ and for $(t, u) \in R^+ \times E$,

$$D^+V(t, u) \leq g(t, V(t, u));$$

(vii) any solution $y(t, t_0, y_0)$ of the scalar differential equation

(3)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = g(t, y) \quad , \quad y(t_0) = y_0$$

satisfies $y(t, t_0, y_0) < \alpha(t), t \ge t_0$, provided $y_0 < \alpha(t_0)$;

Then there exists no $t^* > t_0$ such that $u(t, t_0, u_0) \in E$, $t \in (t_0, t^*)$ and $u(t^*, t_0, u_0) \in H$.

LEMMA 2.2. Assume that

- (i) $V \in C(R^+ \times Y_0, R)$ and V(t, u) is locally Lipschitzian in u;
- (ii) $g \in C(R^+ \times R, R)$ and for $(t, u) \in R^+ \times Y_0$,

$$D^+V(t, u) \leq g(t, V(t, u));$$

- (iii) there exists a set $F \subset Y_0$ such that $u_0 \in F$ implies $u(t, t_0, u_0) \in Y_0, t \ge t_0$;
- (iv) the set $H \subset Y_0$ is such that $\overline{H} \subset Y_0$ and for $(t, u) \in \mathbb{R}^+ \times (Y_0 \sim H)$, $V(t, u) \geq \alpha(t)$ where $\alpha \in C(\mathbb{R}^+, \mathbb{R})$;
- (v) for each $t \in \mathbb{R}^+$, all h > 0, $\mathbb{R}[h; A(t)]$ exists as a bounded operator on Y and for each $u \in \mathbb{Y}$

$$\lim_{h\to 0} R[h; A(t)] u = u;$$

(vi) there exists a $\tau = \tau(t_0, u_0) > 0$ such that for any solution $y(t, t_0, y_0)$ of the scalar differential equation (3) the relation $y(t, t_0, y_0) < \alpha(t)$, $t \ge t_0 + T$ holds.

Then there exists a $T=T(t_0, u_0) > 0$ such that $u_0 \in F$ implies $u(t, t_0, u_0) \in H$ for $t \ge t_0 + T$.

DEFINITION 2.3. A subset $M \subset Y$ is said to be self-invariant with respect to the Cauchy-Problem (I) if $u_0 \in M$ implies $u(t) \in M$ for all $t \ge t_0$.

For any set $M \subset Y$, let $\rho > 0$ and define

$$S(M, \rho) = \{u \in Y : d(u, M) < \rho\};$$

where $d(u, M) = \inf_{v \in M} ||u - v||_{Y}$.

DEFINITION 2.4. Let M and N be any two subsets of Y such that $M \subset N$. The set N is said to be

(i) restrictively stable on M with respect to the Cauchy Problem (1) if for any solution u(t) of (1) and for every $t_0 \in \mathbb{R}^+$, there exist positive numbers $\delta = \delta(t_0, \varepsilon)$ and $\beta = \beta(t_0, \varepsilon)$ such that $u_0 \in S(M, \delta)$ implies

$$u(t, t_0, u_0) \in S(N, \varepsilon) \cap S(M, \beta), t \ge t_0;$$

(ii) restrictively asymptotically stable on M if (i) holds and for every $t_0 \in \mathbb{R}^+$, there exist positive numbers $\delta = \delta(t_0)$ and $\beta_0 = \beta(t_0)$ such that $\lim_{t \to \infty} u(t, t_0, u_0) = u^0 \in S(\mathbb{N}, \epsilon) \cap S(\mathbb{M}, \beta_0)$ uniformly on $u_0 \in S(\mathbb{M}, \delta)$.

Suppose M is a compact set in Y which is self-invariant with respect to the equation (1). We now give a set of sufficient conditions which ensure the restrictive stability of N on M with respect to the Cauchy Problem (1).

THEOREM 2.5. Assume that

(i) $V \in C(R^+ \times S(N, \rho), R^2)$, V(t, u) is locally Lipschitzian in u and for $(t, u) \in R^+ \times S(N, \rho) \sim M$

$$D^+V(t, u) \leq o;$$

(ii) $b \in \mathbb{C}(\mathbb{R}^+, \mathbb{R}^2)$ and for $(t, u) \in \mathbb{R}^+ \times \mathbb{S}(\mathbb{N}, \rho) \sim \mathbb{M}$,

$$V_1(t, u) \ge b_1(d(u, N))$$
 , $V_2(t, u) \ge b_2(d(u, M))$;

- (iii) whenever $u \in M$, for every $(t, r) \in R^+ \times (0, \rho)$, $V_1(t, u) < b_1(r)$ and for every $(t, r) \in R^+ \times (0, \rho)$ there exists $\beta = \beta(t, r) > 0$ such that $u \in S(M, r)$ implies $V_2(t, u) < b_2(\beta)$;
- (iv) for each $t \in \mathbb{R}^+$ and h > 0 (h small) the operator

$$R[h; A(t)] = [I - hA(t)]^{-1}$$

exists as a bounded operator defined on Y and for each $u \in Y$

$$\lim_{h\to 0} R[h; A(t)] u = u;$$

Then the set N is restrictively stable on M with respect to (1).

Proof. Let $t_0 \in \mathbb{R}^+$ and $0 < \varepsilon < \rho$. By hypothesis (iii) there exists $\delta = \delta(t_0, \varepsilon) > 0$ such that $u_0 \in S(M, \delta)$ implies $V_1(t_0, u_0) < b_1(\varepsilon)$ and also there exists $\beta = \beta(t_0, \delta)$ such that $V_2(t_0, u_0) < b_2(\beta)$. We now appeal to Lemma 2.1.

Set $Y_0 = S(N, \rho)$ and $E = [S(N, \epsilon) \cap S(M, \beta)] \sim M$. Take $\partial H_1 = \partial E \cap \partial S(N, \epsilon)$ and $\alpha(t) = b_1(\epsilon)$, with g(t, u) = 0. Then all the conditions of Lemma 2.1 are satisfied and so the solutions $u(t, t_0, u_0) \ni u_0 \in S(M, \delta)$ are such that $u(t, t_0, u_0) \in H_1$ for all $t \ge t_0$.

Also setting $\partial H_2 = \partial E \cap \partial S$ (M, β) and $\alpha(t) = b_2(\beta)$ the conditions of Lemma 2.1 are again satisfied and so $u(t, t_0, u_0) \in H_2$ for all $t \ge t_0$ provided $u_0 \in S$ (M, δ). Hence $u_0 \in S$ (M, δ) implies $u(t, t_0, u_0) \in S$ (N, ϵ) $\cap S$ (M, β) for all $t \ge t_0$, which completes the proof.

A set of conditions that guarantee the restrictive asymptotic stability of N on M is given in the following.

THEOREM 2.6. Assume that

- (i) $V \in C(R^+ \times S(N, \rho), R)$ and V(t, u) is locally Lipschitzian in u;
- (ii) $g \in C (R^+ \times R, R)$ and for $(t, u) \in R^+ \times S(N, \rho) \sim M$

$$D^{+}V(t, u) \leq g(t, V(t, u));$$

(iii) $b \in C(R^+ \times [0, \rho), R)$, b(t, w) is non-decreasing in w for each $t \in R^+$ and for $(t, u) \in R^+ \times S(N, \rho) \sim M$,

$$V(t, u) \ge b(t, d(u, N));$$

(iv) for each $t \in \mathbb{R}^+$ and all h > 0 the operator $\mathbb{R}[h; A(t)]$ exists as a bounded operator defined on Y and for each $u \in Y$,

$$\lim_{h\to 0} R[h; A(t)] u = u;$$

(v) there exists a $T = T(t_0, y_0) > 0$ such that any solution $y(t, t_0, y_0)$ of the scalar differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = g(t, y) \quad , \quad y(t_0) = y_0$$

satisfies the inequality $y(t,t_0,y_0) < b(t,r)$, $t \ge t_0 + T$ for every $r \in (0,\rho)$.

Then the restrictive stability of N on M implies the restrictive asymptotic stability of N on M.

Proof. Assume that the set N is restrictively stable on M with respect to (I), then for any solution u(t) of (I) and every $t_0 \in \mathbb{R}^+$, there exist positive numbers $\delta = \delta(t_0, \varepsilon)$ and $\beta = \beta(t_0, \varepsilon)$ such that $u_0 \in S(M, \delta)$ implies

$$u(t, t_0, u_0) \in S(N, \varepsilon) \cap S(M, \beta), \quad t \ge t_0.$$

Therefore $u(t, t_0, u_0) \in S(N, \varepsilon)$ and $S(M, \beta)$ all $t \ge t_0$. We now make an appeal to Lemma 2.2.

First set $F = S(M, \delta)$ in Lemma 2.2, then condition (iii) of the Lemma is verified. Let $t_0 \in R^+$ and $0 < \varepsilon^1 < \varepsilon$. Set $H_1 = S(N, \varepsilon^1)$ and $Y_0 = S(N, \varepsilon) \sim M$, then for $(t, u) \in Y_0 \sim H_1$ and the monotonicity of $b(t, r), V(t, u) \geq b(t, \varepsilon^1)$. Now set $\alpha(t) = b(t, \varepsilon^1)$ the condition (iv) of the Lemma is satisfied. Conditions (i), (ii), (v) and (vi) of the Lemma are already part of the hypothesis, hence the Lemma is applicable to H_1 .

Thus there exists $T_1 = T_1(t_0, u_0) > 0$ such that $u_0 \in F = S(M, \delta)$ implies $u(t, t_0, u_0) \in H_1 = S(N, \epsilon^1)$, for $t \ge t_0 + T_1$.

Let $t_0 \in \mathbb{R}^+$ and $0 < \beta_0 < \beta$. Set $H_2 = S(M, \beta_0)$ $Y_0 = S(M, \beta) \sim M$, then for $(t, u) \in Y_0 \sim H_2$ and the assumption on b, $V(t, u) \geq b(t, \beta_0)$. Setting $\alpha(t) = b(t, \beta_0)$ and proceeding as in the above arguments there exists $T_2 = T_2(t_0, u_0) > 0$ such that $u_0 \in F = S(M, \delta)$ implies $u(t, t_0, u_0) \in H_2 = S(M, \beta_0)$ for $\epsilon \geq t_0 + T_2$.

Choose $T = \max \{T_1, T_2\}$, then $T = T(t_0, u_0) > 0$ and $u_0 \in S(M, \delta)$ implies $u(t, t_0, u_0) \in S(N, \epsilon^1) \cap S(M, \beta_0)$ for all $t \ge t_0 + T$ which is the restrictive asymptotic stability of N on M. The proof is complete.

REFERENCES

- [I] O. AKINYELE (1976) Stability of motions of non-linear Abstract Cauchy Problem, « Bolletino U.M. I.» (5), 13-A, (13), 322-331.
- [2] O. AKINYELE Asymptotic stability fro the non-linear Abstract Cauchy Problem (to appear in «Rivista di Matematica»).
- [3] V. LAKHSMIKANTHAM and S. LEELA (1971) Global results and stability of motion, « Proc. Camb. Phil. Soc. », 70, 95-102.