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Àlgebra. —  Perfect polynomials over GF (f) (* (**)>. Nota di J a c o b  

T. B. B e a r d ,  J r . ,  J a m e s  R. O C o n n e l l ,  J r .  e K a r e n  I. W e s t ,  

presentata dal Socio B. S e g r e .

R iassunto. — Un polinomio monico A(x)  eGF [ q , x) dicesi perfetto su GF (q) se, e 
soltanto se, A (x) uguaglia la somma a (A (x)) dei divisori monici distinti di A (x) in GF [q , x \  
Si caratterizzano i polinomi perfetti su GF (q) che sono riducibili in GF [p , x], e si formulano 
congetture analoghe a quelle classiche sui numeri perfetti dispari.

i .  In t r o d u c t io n  a n d  n o t a t io n

E. F. Canaday, the first doctoral student of L. Carlitz, considered in 
1941 [1] the sum cr (A (x)) of the distinct divisors of the polynomial
A (x) e GF [2 , x]. We generalize the domain of g and define a (A (pc)) as 
the sum of the distinct monic divisors in GF [q , x] of the monic poly
nomial A (x) G GF [q , x] , q =  p d, d  >  1. In the case A (x )  =  a (A (x)), we 
call the polynomial A (x) e GF [q , x] perfect over GF (g). The purpose of 
this paper is to continue and extend the basic study begun by OConnell [2]. 
The principal result is a characterization of all perfect polynomials over 
GF (p) which split in GF [p , x]. Related results (§3) lead to conjectural 
analogs of the classical question on the existence of odd perfect numbers, 
and we display (§ 4) all currently known perfect polynomials over GF (g) 
which do not split in GF [q , x] } q =  2 , 3 , 5 .  We are indebted to 
L. I. Wade, the second doctoral student of Carlitz, for introducing us to 
the work of Canaday, and to both Professors Carlitz and Wade for their 
enthusiasm toward our efforts.

Throughout this paper, we are led by only two of Canaday’s several results. 
First, that x* (x ■— i)0 is perfect over GF (2) if and only if a =  ß =  2n— 1 
for some n >  o and, second, that whenever A (x) is perfect over GF (2), then 
either x  (x — 1) | A (x) or else (x (x ■— 1) , A (x)) =  1 and A is a perfect square. 
Canaday found it “ plausible” that no perfect polynomials of the last type 
exist, hence the conjecture in § 3 is not original with us.

Monic polynomials over GF (g) are denoted A , B , C , • • •, while prime 
(monic irreducible) polynomials over GF (g) are denoted P , Q , R ,• • •. 
Following Canaday, we write A -> B whenever a (A) =  B. It is clear that 
deg A =  deg à (A) and that g (AB) =  a (A) a (B) whenever (A , B) =  1.

(*) This research was partially supported by an Organized Research Grant from The 
University of Texas at Arlington.

(**) Nella seduta del 12 marzo 1977.
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n

Thus whenever A e G F [q , x] has the canonical decomposition A =
i= 1

as the product of powers of distinct primes P  ̂ with a (i) >  o, then

n n n cc(i)

a — n -  n ® (p?®) = n s p̂-
i  = 1  1=1 i =  1 j  = 0

This fact, that g is multiplicative on its domain, is used extensively and 
without further reference, as is the basic identity

a(i)

X P i  =  (P“(i)+1- o / ( p i - i ) .
j=0

Though transparent, the following result is very useful—either in showing 
a polynomial to be perfect, or in showing a polynomial not to be perfect.

Lem m a. The polynomial A is perfect over G F (g) i f  and only i f  fo r  each 
prime polynomial P e GF [g , x \ ,m  =  n whenever Pm || A and Pw || cr (A).

As usual, P * ||B  is equivalent to P* | B and P fc+1T B.

2. P e r fe c t  s p l it t in g  po l y n o m ia l s

In Theorem 8, § 3, we will show that whenever the polynomial A is per-
v - 1

feet over GF (p ) and (oc — i) | A for some i  , o <  i <  p , then J J  (x — i) | A.
i=0

(As usual, we take the integers modulo p  as our representation for GF (/>)). 
Thus in characterizing all perfect polynomials A which split in G F [ ^ ,^ ] ,  
it suffices to consider

a  =  h > - o a® a (f) >  o .

The analogous statement for A e GF [g , x] does not hold, by a later example. 
For this and other reasons, we obtain only a partial characterization for per
fect polynomials which split in G F [g , x]. We first assume a (i) =  k  >  o for

v-i
o <  i  < p  and determine all integers k such that A =  n  ( x — i)* is perfect.

i =0
As a guide through our strategy, recall that any positive integer k can

n
be uniquely represented to the base p  as k — ^  k (i) p % ■— k (o), where 

o <  k (f) <  p  for o <  i <  n.

T h e o r e m  i.  

fo r  each n >  o.

The polynomial A  =  J J  (x ■— a f ^ 1 is perfect over G F (g)
aeGF(ÿ)
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Proof.

{x — i f

For each a e GF (q),

{x — a Y  — I
,pn- i

x  -— a -
—• a ■— I y  

x  — a ■—-I
(x '— a — I y-i,

so that
A  =  U ( x  —  a y ~ \ ^ ] J ( x  —  a — i y ~ i = A .

a a

T h e o r e m  2. The polynomial A  =  J J  (x — is perfect over GF (g)
aeGF(g)

whenever N | (q — 1) , N 7^ 1, and n >  o.

Proof. Note that y N — 1 =  XI O' — where H is the unique (multi-
òeH

plicative) subgroup of G F (g)* of order N. Thus for each n~> o, each 
admitted N, and for any fixed a e GF ( g ) ,  we have

\(r   T] vn
(x —  a ) ^ - 1 -> =  (x —  a —  i )^ -1 JT (x — a —  b y .

X ---a ---  I ôeH
H=i

Hence (x — a) is contributed to a (A) only by

(x —  a +  i)Np*-i - * ( x — a)vn~' Y l ( x  —  a +  i —  b y
beU 
b* 1

and, for each b e Y l — {1},

(x ■— a +  (x — a +  b — f y -1 (% — d f n XX (x  — a b — c)pn.
ce H

îycyb

Since there are precisely (N —■ 1) such b e  H — {1}, then (x — #)N2>*-i1| <7 (A) 
as ([pn — 1) +  (N — 1) p n =  Np n — I, and we are done by the Lemma.

It is convenient hereafter to treat the cases N =  1 and N >  1 simulta
neously and adopt the convention that indexed products over the empty set 
take the valüe of 1. From Theorem 1 and Theorem 2 we have the 
sufficiency of

THEOREM 3. The polynomial A ~XT (x —  is perfect over G F (q )
aeG¥(q)

i f  and only i f  N | (g •— 1) and n > o \

Proof. We prove the necessity by contraposition. Without loss of gene
rality assume (N , p) =  1, and N I (q — 1). Consider

x Np”- l C*N — I y
x  — I

Since p  \ N, then (xn — 1) £ GF \g , so that x N ■— 1 has no repeated 
roots in GF (g). Furthermore, #N— 1 has precisely (N , q -— 1) distinct 
roots in GF (q), and (N , q — 1) <  N. Hence — 1 does not split in 
GF [q , x] and, by the Lemma, the polynomial A is not perfect.
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In the case q =  p> we obtain a stronger result.
p - 1

T heorem  4* The polynomial A =  (x  —- i f  is perfect over G F (p) i f
i —0

and only i f  k =- Np n — 1 where N | (J> — 1) and n >  o.

Proof\ There remains only to prove the necessity in the case k>_p
m

and ^ p n — I . For this case, let k =  ^  k (j) pi  ■— k (o) where
3=1

o < k ( j ) < p  for o < 7  <  m  and o <  k (m) <  p , and consider

x Mm)pm+ -.-+ h tl)p -M O )+ l .__ ! g

Again, it suffices to show that the polynomial B does not split in GF [p , x]. 
If k (o) I , this is easily seen since B $ GF [p , xp] and deg B =  k +  1 >  p. 
If k (o) =  I , then

B =  (xUm)pm~l+-+m )__\)pl =  B?7

where /  is the least positive integer j  such that k (j ) o. Then Bx £ GF [y>, xp\ 
and deg B 1 > p. Hence Bx does not split in GF [p , x]> neither does the 
polynomial B, and the proof is complete.

The perfect splitting polynomials in GF [p , x] are fully characterized in
v - 1

THEOREM 5. The polynomial A  =  J J  (x — i)a® is perfect over G F  (p)
i = 0

i f  and only i f  ol (o) =  a (J) fo r  1 < j < p  and a (o) =  Npn — 1 fo r  some 
N I (p — 1) and some n >  o.

Proof ‘ If some a (i) is not of the form Np n ■— 1 with N | (J> — 1) and n~> o 
then g ((x •— z)a(^) does not split in GF [p , x] for this i , as argued in proving 
Theorem 3 and Theorem 4, and hence A is not perfect. By Theorem 4, there 
remaihs only to establish the necessity of the equality of the exponents a (i) 
o <  i  <  p.  For o <  i < p y let a (i) =  N (i) p n{i) •— 1 where N (i) \ (p —  1) 
and n ( i ) >  o. As in the proof of Theorem 2, for each fixed j  , o < j  <  p,

(2.1) (x — y)N(i)^‘)-i -> (x _ y  _  i ) ^ - i  Y i  (x — j  —  d)pnU)
oeH /
a=*=i

If A is perfect, it follows from (2.1) and the Lemma that n (7 +  1) =  n  (j ) 
for o < j  <  p. Thus for o <  i  < p  , a (2) =  N (V)p n — 1 for some n > o .  
From (2.1), all (x •—/ )  contributions to <r (A) arise from

(2.2) (* — j  +  i)NO*-d^-i -+(x —  j)v”- T  f l  (x — j  +  I — a)*",

<M=1
or else i e H H — {1} and

(2.3) ( x — f + ò)w -»pn-i - > ( * —y r  n  ox — j + b — c y \
ceHj _ b

l=4=c4=fc
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If the polynomial A is perfect, then precisely N (j) — 1 contributions (x —j ) pn 
must be realized in the manner of (2.3). Hence there exist precisely N (y) 
elements b e GF (J>) such that k H H . For the remaining^)— N (J) elements 
d e  GF (^), we must have d $ H j _ d. Since y is arbitrary, it follows that
N (i) — N (y) for o <  i  , j  <  p.

3. R e l a t e d  r e s u l t s  

Our remaining results lead us to state the

C onjecture. I f  the polynomial A is perfect over GF (p)} then x \ A .  
More generally, i f  A  is perfect over G F (y), then (x — d) | A fo r  some a e GF (q).

The generalization of the initial statement of the Conjecture to GF (q) is
false. Let q =  p d, d  >  1, and choose any fixed a e GF (q) with a $ GF (J>). For

v - 1
the polynomial A =  J J  (x — a ■— z), we have (x •— a -— t) (x —  a — 2 +  1)

i=  0
so that A is perfect, and x \ A .  Though not proved, we suspect from Theo- 
rem 7 that linear polynomials which divide perfect polynomials over GF (q) 
do so simultaneously as members of p-rings [1]. Analogous to continuing 
attacks on the existence of odd perfect numbers, we have

THEOREM 6. A  minimum of p  distinct prime polynomials divide each 
polynoinial which is perfect over G F (q).

n

Proof. Let the polynomial A =  J J  P^(l) where the primes e GF [ q , x]
i = l

are distinct, n (i) >  o, and suppose n <  p. For each j  such that 
deg P ?- =  min {deg P j  let

A j =  V p - 1 XI Pi &.
i=¥l

n
Then deg A • — 2  deg P^(%) ■— deg P^ is the maximum degree of all admis-

i = 0

sible summands of a (A) -— A. The number m  of such summands Aj  satisfies
m

I <  m  <  n <  p  and each A j is monic. Hence ^ j A j f ^ O y G  (A) -— A ^ o , A  is

not perfect, and we are done by contraposition.
v - 1

COROLLARY. The polynomial A  =  j j  (x ■— i) is the unique perfect poly-
i —0

nomial over G F (p) of degree p. .

The proof of Theorem 6 generalizes directly to yield the following two 
results.

n
THEOREM 7. I f  the polynomial A  =  J J  P“(t) is perfect over GF (q), the

i = 1
primes P f eG F  [q, x] are distinct, a ( ï ) >  o, and deg T)1<. deg P2<  • • • <  deg Pn, 
then fo r  some integer k >  1 , deg Px =  deg Pj fo r  each j  satisfying 1 < k p .
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THEOREM 8. Let the polynomial A e G F  [p , x] be perfect. I f  (x —  i) | A
v- 1

fo r  some i , o <  i <  p, then (pc •— i) | A.
i = 0

In the case p  — 2, our concluding result coincides with the second 
mentioned result of Canaday [1; Theorem 1].

k
T h e o r e m  9 . Let the polynomial A = ' J J  P ^  be perfect over G F  (p) where

n (i) >  o and the distinct primes have constant terms ci respectively. Then 
# I A unless all of the following are satisfied:

i) =

ii) n (i) =  o (mod 2) whenever ĉ  =  p  — 1,
iii) n (i) ^  — I (mod^>) whenever cx =  1,
iv) n (f) ^  ■— 2 (mod p  — 1) whenever 1 <  ĉ  <  p —  1.

Proof. Condition i) holds by Theorem 8. To see ii)-iv), let

k n( i)

A =  a(A ) =  n S r r
i  ==1 w = 0

so that the polynomial A has constant term c given by

k n(i)

'  =  n 2 * r -
i  —1 m = 0

If 'x  \ A then c o, so that ii) and iii) hold immediately. It follows from
v- 2

Euler’s Theorem that ^  am =  0 (mod p) whenever 1 <  a <  p, from which iv)
m = 0

is immediate.

4. S ome n o n -s p l it t in g  pe r fe c t  po l y n o m ia l s

The perfect polynomials given in this section over GF (3) and GF (5) 
were constructed by OConnell [2], based on factorization tables and sum of 
divisors tables obtained by Beard and West (unpublished). The latter tables 
give g (A) for all monic polynomials A e GF (p) not divisible by ^  and of 
degree n  as follows:

p  =  2 , 2 < n < i 5  ; p  =  3 , 2 <. n <  ç ; p  =  $ , 2 < n < 16.

For monic polynomials A not divisible by x , we have determined (on an 
IBM 360/155) all perfect polynomials over GF (p) of the form x k A  where 
0 <  k <  deg A <  i S (p =  2) , 9 (p =  3) , 6 =  5). Those over GF (2) which
do not split are ten of the eleven 4 Vnon-trivial ” one-rings given by Canaday 
[1], who asserted them likely to be the only ones of this type. The question
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remains open. For completeness, we include these eleven perfect polynomials 
of Canaday in Table I so that all known non-splitting perfect polynom ials 
over GF (J>) are listed for p  — 2 , 3 , 5 .  Each polynomial is displayed 
by its prime-power factorization. We observe interesting generating 
expressions for certain groups of these polynomials and, unfortunately, that 
none of them appear to generalize. Let ak denote the /é-fold composite
of g with itself and let y  vary as y  =  x  — i , o <  i <  p. For p  =  3, 
the (three) given polynomials of degree 8 are all generated by each 
of the products y 3 g (y) g2 (y ) g (y 3) and g4 (jp3) a (y) a2 (y) g (_y3); those of 
degree 16 are generated by y 3 g (y ) <7 ( y4) cr2 ( j 4) g3 (y4); those of degree 23 
by y 4 g (y) a2 (y) a3 (_y) a4 (y) g5 (y) g6 (y) g (y7) g2 (y7)] and those of degree 28 
are generated by y 5 g (y) g2 (y) g (y2) g (y 6) g2 (y 6) a3 (jp6).

T a b l e  I 

Non-splitting Perfect Polynomials

P

2

3

3

Degree Complete Factorization

5 x ( x — i ) 2 (;r2 +  ;r +  1)  , x2 (x ■— i ) ( ^ 2 +  ^ r + i )

i l  x ( x — i )2 (x*yx-\- i)2 (xP-\-x~\-i) , x2 ( x — 1) {x2-\-x-\~i)2 (;r4 - j - ; r - |- i )

X3 ( x ----  I )4 (x4 +  X3 +  I ) , X4 ( x ----  I )3 {x4 +  X3 +  X2 +  x  +  I )

15 X3 (x —  l ) 6 (^ 3 + ^ + l )  (^ 3 + ^ 2 T l )  , Xe ( x ------I ) 3 (^ 3 + ^ + l )  (^ 3 + ^ 2 + l )

1 6  X4 (x —  I )4 (x4 +  X3 +  I ) (x4 +  Xs +  X2 4- x  +  I )

2 0  ;r4 ( # —  i ) 6 (x3 +  X +  1) (x3 +  X2 .+  1) (x4 +  X3 4“ X2 +  x  +  1)

x6 (x—  i ) 4 (x3 +  x  +  1) (x3 +  X2 +  1) (x4 +  X3 +  1)

8 .r (T  —  I )2 (x —  2 ) 3 {x2 +  2 ^  +  2 ) , x2 (x —  i ) 3 (x —■ 2) (x2 y  x 2),

X3 ( x ----  I ) ( x ----2 )2 (x2 +  I )

15 ix3 ( x ----  I )3 (x —  2 ) 3 (x2 +  I ) (x2 +  X  +  2 ) (x2 +  2 X  +  2 )

1 6  x (x —  1 )2 (x —  2 )4 (x2 +  I ) (x3 y  2x2 y  x y  1) (x4 y  21? y  x2 y  x  y  2)

x2 (x —  i )4 (x—  2 ) (x2 +  2 ^  +  2 ) (x3 y  2 ^ 2 y  2x y  2) (xA y  x2 y  x y  1 )

x4 (x —  1) (x —  2 )2 (x2 y  x y  2) (x3 +  2x2 +  1 ) (x4 y  x3 y  x2 y  x y  1)

2 3  x5 (x —  i ) 5 (x —  2 ) 7 {x2 y  1) {x2 y  x y  2 ) (x2 - f  2x y  2 )

x5 (x —  i ) 7 (x —  2 )5 (x2 y  i  ) (x2 y  x y  2 )  (x2 y  2x y  2)

x7 (x —  i ) 5 (x —  2 )5 (x2 +  1) (x2 y  x y  2) (.%2 y  2x y  2)

2 8  • x5 (x —  i ) 5 (x —  2 )6 (^:6 y  x5 y  2x3 y  2x2 +  1) (x6 y  x5 y  2X3 +  2 ^ 2 +  2 )

X5 ( #  —  l ) 6 (x —  2 )5 (X6 +  +  2X4 +  2.T3 +  1) (x6 y  X5 y  2xP +  2X3 +  2 )

X6 ( x ----  i ) 5 (x —  2)5 ' ( ^ + ^ + ^ 4 + ^ 8 -F ^ a + ^ - l - l )  (^ 6 + ^ 5 + ^ 4 + ^ 8 + - * 2 + ^  +  2 )

3 9  x4 (x  —  i  )4 (x •— ■ 2 )4 (x4 y  x3 y  x2 y  x y  i  ) (x4 +  2 ^ 3 y  x2 y  x y  2)

{x4 y  x2 y  x y  1) (x3 +  2 * 2 +  1) (x3 y  2x2 y  x y  1) (^ 3 +  2 * 2 +  2 ^  +  2 )

(x2 y  1) (x2 y  x y  2) (x2 y  2x y  2)
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Continued'. TABLE I.

Degree Complete Factorization

5 4  X 6 (X  —  i ) 6 ( x ----2 )6 ( x G +  X 5 +  X*  +  Xs  +  X2 + >  +  I )

( X6 +  X 5 +  X4 +  X3 +  X 2 +  X  +  2 ) ( x 6 

( x 6 +  X 5 +  2 X 4 -fi 2 r 3 +  2 ) (X 6 

( x G -fi X* +  2 X 3 -j- 2X*  -fi 2 )

75  x 9 ( x ----  I ) 9 ( x ---- 2 ) 9 (X4 +  X3 -fi X 1 -fi X  +  1 ) ( x 4 -fi 2X3  +  X 2 +  2 X  -fi 1 )

( x 4 -fi X2 +  2.x -fi 1 ) (X 4 +  2 ^ 3 -fi X2 +  X  -fi 2 ) (X4 -fi X2 -fi X  +  i )

( x 4 +  X3 +  X 2 -fi 2 X  +  2 ) (X 3 -fi 2X 2 +  1 ) ( x 2 +  X* -fi 2 ) ( x 3 +  X 2 -fi 2 X  -fi i )  

( x s  +  2 X 2 -fi X  +  1 ) ( x 3 +  2 X 2, +  2 X  +  2 ) (^ 3 -fi . r 2 -fi X  +  2 )  (^ 2 -fi I )

(X 2 -fi *  4“ 2 ) ( .r2 -fi 2 x  -fi 2 )

5 22 X3 (x — 1) Or — 2)2 (* — 3)2 (x — 4)2 (*® +  2) (r2 +  3) (^2 +  3* +  3)

(x2 -fi 3* +  4) (x2 +  2^ +  3) (x2 +  2^ +  4)

x2 (x — i)3 (x — 2) (x — 3)2 (x — 4)2 (x2 +  x  -fi 1) (x2 +  x  -fi 2) (x2 -fi 2) 

(^2 -fi 3) (x2 +  3^ +  3) (x2 +  3X +  4)

X2 (x — i)2 (# — 2)3 (* — 3) (# -— 4)2 (*2 -fi X +  1) (x2 -fi X -fi 2)

O2 4- 4 #  4- 1) (.X2 -fi 4 *  +  2) (x2 +  3^ +  3) (x2 -fi 3* -fi 4 ) 

x2 (x —  I )2 (x —  2)2 (x —  3)3 (x —  4 ) (x2 -fi X  -fi 1 ) (x2 -fi X  -fi 2)

(>2 4- 4* 4- 1) (x2 -fi 4* 4- 2) (x2 -fi 2* -fi 3) (x2 -f- 2* -fi 4) 

x  (x “  i)2 (x —  2)2 O  — 3)2 (# — 4)3 (^2 -fi 4* 4- 1) O2 -fi 4X -fi 2)

(^2 4- 2* 4- 3) (*2 4- 2X 4- 4) (x2 4- 2) (.r2 4- 3)

30 x2 ( x — i)2 (x —  2)2 (x — 3)2 (* — 4)2 (x2 4- x 4- 1) (x2 4- x  4- 2)

(*2 4- 3* +  3) (x2 4- 3*  +  4) (x2 4- 2) (*2 4- 3)

(x2 4- i x  4- 3) (*2 +  2* -fi 4) (*2 4- 4* 4- 1) (*2 4- Ax 4- 2)

36 * (# -— 1) (* — 2)4 (* — 3)4 (x — 4)6 (xQ -fi 2x*> 4- x4 -fi x  4- 2)

(>6 4- 2x? 4- x4 4- * 4- 3) (x4 4- x* 4- x2 4- 1) (x2 4- 4* 4 - 1) (x2 4- 4x  4- 2) 

* (x —  i)4 (x — 2)4 (x — 3)6 (*.-—4) (*® 4- 3X5 4- x 4 -j-Ax3 -fi x 2 4- x  4- 2) 

(x6-\-3x5jrx4jr4xBjrx2-\-x-\-3) (r4-fi4^4-4) (xP+x+i)  (^24-^4-2) 

x4 (x — i)4 (x — 2)6 (x —  3){x — 4) Cx6 4- 4^5 4- x4 4- 3X3 4- 4^2 4- 3)

(^6 +  4X5 4- x4 4- 3-̂ 3 +  4*2 4- 4) (x4 4- 4*3 4- x2 4- 3* -fi 4)

(x2 -fi 3x  +  3) (*2 +  3^ +  4)
x4 (x — i)6 (x — 2) (x — 3) (x — 4)4 (^6 4- 4- 2^3 4- 4^2 4- 2X 4- 1)

(^64-^4+2^34-4^2+2^4-2) (x4+ 3x3+ 4x2-hx-i-3) (x2jr2) (x2+ 3)

5 36 x6 ( x —  I) (x —  2) (x —  3)*(x —  4)4 (^6 4 - ^  +  x? 4 -^ 3 -fi*8 4 -*  +  1)

(x6 -\-x5 +  x4 +  x ^ Jr x 2 j r x - \ -  2) (^4 4~ 2 ^  4- 4#2 4- 2̂ r 4- 2)

(^2 4- 2^ 4- 3) (x% 4- 2x 4- 4)
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Continued: Table I.

P Degree Complete Factorization

85 xP (x — I)5 {pc — 2)5 (x —  3)5 (x — 4)5 (.** 1 2 +  2)2 (xP +  x  +  i)2 (x2 +  2* +  3)2

(x2 +  3* +  3)2 +  Ax +  i)2 (xP +  2) {xP -F 3)

(x* -F 2xP +  4*2 +  3* +  3) (x4 +  2 ^  +  4^2 4- 3* 4- 4)

(** +  4x3 4- *2 4~ 4* +  3) (*4 +  4*® +  *2 +  4* +  4)

(xP +  a3 +  +  * +  3) O*4 +  4- x2 -F x  +  4)
{xp +  3^3 +  4*2 +  2* -F 3) (x4 +  3^3 +  4*2 4- 2# 4- 4)

130 x6 ( x — i)6 (x — 2)6 (x — 3)6 (x — 4)6 (*6 +  x5 +  x4 -f x3 +  x2 -F x  4- 1)

(xG. +  x5 +  X4 +  x 3 +  x2 +  x  +  2) (x6 +  xP +  2*3 +  4^2 -F 2* +  1)

(.x6 +  xP +  2*3 -F 4*2 +  2^ +  2) (x6 +  4X5 +  xP +  3*3 4- 4^2 +  3)

(x6 +  4 *P +  xP +  3 X3 +  4^2 +  4) (x6 +  3X5 +  xP +  4*3 +  x 2 +  x  +  2)

(xe +  3X5 +  x4 -F 4*3 +  x2 +  x  +  3) {x% +  2*5 +  xP +  x  +  2)

(xQ +  2xP +  x4 +  x  -F 3) (x4 +  2xP +  4*2 +  2^ +  2)

(xP +  3xP +  4*2 +  x  +  3)

(x4 +  4^3 4- x2 +  2>x -F 4) (x4 -F 4* 4- 4) (x4 4~ x 3 +  x2 +  1)

(x2 -F 2* +  3) (x2 +  2* 4- 4) (x2 4- 2) (x2 +  3) (x2 4- 3x  4- 3)

(x2 4- 3f  4- 4) (x2 4- x  4- 1) (x2 4- x  4 - 2) (x2 +  4x 4- 1) (x2 4- 4x 4- 2)
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