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Meccanica dei fluidi. —■ On the stability of spherically symmetric 
flows <*>. Nota di A n d r e a  P r o s p e r e t t i ,  presentata <**> dal Corrisp. 
P . C a l d i r o l a .

R iassunto. — Si considera il moto prodotto in un liquido lievemente viscoso da una 
cavità di forma approssimativamente sferica e di raggio variabile. La parete della cavità 
è descritta in termini di uno sviluppo in armoniche sferiche i cui coefficienti sono funzioni 
del tempo. Nella ipotesi di piccola distorsione della forma sferica si deriva una equazione 
di moto linearizzata per tali quantità e si discutono varie caratteristiche del risultato ottenuto.

The question of the stability of the interface between two superposed 
fluids of different densities is a classical problem in fluid mechanics, to which 
the names of Rayleigh and Taylor are usually associated. Indeed, although 
a treatment of waves at the interface between two fluids of different densities 
can be found in a famous paper by G. G. Stokes, published in 1847 [1], it 
was Lord Rayleigh [2, 3] who recognized the implications of Stoke’s result 
for the stability problem, discussing it with much greater generality, and 
G. I. Taylor [4] who clarified the effect of a superimposed acceleration. The 
results are well-known, and we shall give here only their limiting form as thè 
density of one of the fluids becomes vanishingly small so that one deals, in 
fact, with only one liquid. If the displacement of the interface from the (plane) 
equilibrium configuration is in the form of a sinusoidal wave of wavenumber /£, 
in the linearized approximation the time dependence of its amplitude, a(t), 
is governed by the following equation

Here g  is the “ effective ” acceleration defined by g  =  g1 (/) — g y where gx (f) 
is an imposed, possibly time-varying, acceleration and g  is the acceleration 
of gravity; both g  and g1 (f) should be considered positive when they are di­
rected into the liquid. The surface tension has been denoted by <7, and the 
liquid density by p.

It is clear that, for positive constant g  (for example, liquid lying above 
the free surface, with gx =  o), Eq. (1) predicts an unbounded growth of per­
turbations the wave number of which is smaller than a “ cutoff” wave number 
kc given by k*c =  pg fa. In this case therefore the configuration is unstable 
whenever the wavelenght of the allowable perturbations is not suitably restric-

(*) Lavoro eseguito nell’ambito delle attività del Gruppo Nazionale per la Fisica Mate­
matica, Comitato Nazionale per le Scienze Matematiche, Consiglio Nazionale delle Ricerche.

(**) Nella seduta del 12 febbraio 1977.
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ted, for instance by the presence of rigid boundaries. On the other hand, 
when g  is negative, one has unconditional stability. Qualitatively similar 
results hold also for tim e-varying/ .  The situation may be summarized by 
the statement that the plane interface is stable or unstable according as the 
“ effective ” acceleration is directed away from or into the liquid respectively.

Equation (1) is valid only insofar as viscous effects can be neglected. 
The viscous case has been treated by several authors [5-7] in the framework 
of a normal-mode analysis, the limitations of which have however recently 
been pointed out by us [8]. In the same study it was nevertheless shown that, 
in the limit of small viscosity, the complete equation (which has an integro- 
differential structure) can be approximated by adding a dissipative term to 
Eq. (1). This correction can also be obtained either by taking the small-visco­
sity limit of the normal-mode result, or by making use of Stokes’ dissipation 
function which, to first order in viscous effects, can be computed from the 
inviscid potential flow solution (Ref. [9], Section 348; Ref. [10], Section 25). 
The approximate equation which is found in this way is

(2) + A v k * à± - ( g k ~ - ^ k ^ a  =  o,

where v =  (x/p is the kinematic viscosity of the liquid. In view of the follo­
wing developments we would like to note explicitly an important feature of 
this equation, namely that viscosity merely introduces a term proportional 
to d^/d/, without any effect on that proportional to a. Interpreting Eq. (2) 
as the equation of a fictitious oscillator, we may say that viscosity introduces 
damping, but has no effect on the restoring force. This fact has the important 
consequence that the stability features found in the inviscid case are not 
modified, but only the rate of growth or decay of the amplitude of the distur­
bances is affected. One of the purposes of this note is to show that, in the case 
of a slightly distorted spherical interface of variable radius, this characteristic 
is no longer conserved: viscosity affects also the “ restoring force ” , and there­
fore unavoidably modifies the stability properties of the configuration. It 
appears likely that such a feature is not characteristic only of the spherical 
situation, but is to be encountered with any non-plane free surface.

We consider a nearly spherical cavity (bubble) of time-varying mean 
radius R (/) in an unbounded viscous liquid. In terms of spherical coordinates 
centered at the centroid of the cavity we may describe the shape of the free 
surface by means of an expansion in spherical harmunics as follows

r ( 0 >ç) =  R(O +  S f l h, (OYT(e,9)-
l,m

In the linenarized theory it is found that the equations for the different a’s 
are uncoupled, and furthermore that they are inepedndent of the degree m 
of the spherical harmonic [11-13]. Accordingly, we shall omit the second 
index from the amplitudes, and we shall restrict our attention to only one of
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them, an say. Further, as is appropriate for a bubble filled with an ordinary 
gas or vapor far from the critical point, we shall neglect in this work the dy­
namical effects of the fluid contained in the cavity; they are considered, howe­
ver, in Ref. [13]. Let us remark here that we adopt the point of view that 
the mean radius R (/) is a prescribed function of time. For any particular 
problem this quantity may be obtained from the well-known Rayleigh-Plesset 
equation [11, 14], which can be solved independently of the quantities at .

We have shown elsewhere [13] that in the hypotheses stated above the 
amplitude an (t) of the n-th order spherical harmonic is given by the following 
equation

/„N d2an f I dR  . . I \ / I v v *1 dan
(3) + [ 3  R - d T “ 2 ( » - . i ) ( » + - i ) ( »  +  2 ) ^ rJ - 5 r

+  (» — I > [ - J _  +  2 (» +  I) ■(» +  (»+  I) (« f

+  n (n +  I) (n +  2) ™  T (R (*) , *) ' /

OO

+  n( n +  i ) ^ ^ j ' [ ( R l s y - i ] ( R [ s y T ( s , t ) d s = = o .
m

Here the quantity T (r , t) is the toroidal component of the vorticity (Ref. [15], 
Appendix III) and is the solution of

subjett to the following condition at the cavity boundary, r  =  R (/)

OO

(5) 2 R"-1 I *-«T (.v, /) ch~ T (R (/) , 0  -
R(Q

2 f  d an . v I dR  ]
=  — n---- \ (n +  2) — —  i ) t t —7— an .n +  I L àt K 7 R d t n\

The initial conditions on the field T depend on the particular problem inves­
tigated, and can be assigned with a large degree of arbitrariness. Equation (4) 
derives from the linearized form of the equation of the vorticity, and Eq. (5) 
is the expression of the dynamical requirement of vanishing tangential stress 
at the free surface. Equation (3) then follows on imposing the other dynamical 
condition that, at the free surface, the discontinuity in the normal stress be 
balanced by the effect of surface tension.
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(6)

Upon elimination of T (R (f) , t) between Eqs. (3) and (5) one finds

da„

+  in — 1)

d2 an I" 1 dR  , , . v 1P  R  W + 2 ( ”  +  2 ) ( 3 *  +  , ) Ë î J  c R
I d2 R

[ - R d^2 +  2 (» +  2) ^  + .(»  +  0  (» +  2) - ^ 3 ]  an

CO

2 n ( n  +  1) (n +  2) j (R[s)n T (s , t) d j

OO

+  n in +  I )  - 1  ^  j  [(RIsy -  I] (R/*)» T (s , i )  ds =  o .
R

It can be shown that, if the integrals involving T are expressed in terms of 
d a jd t  [as is in principle possible by solving Eq. (4) subject to the condi­
tion (5)] this equation acquires an integro-differential structure in time. As 
was already observed in Refs. [8] and [13], this feature arises from the fact 
that the rate of energy dissipation depends on the instantaneous distribution 
of vorticity in the liquid, which is determind by the prior motion of the free 
surface.

Let us consider a situation in which the initial vorticity vanishes (i.e. 
T ( r , o )= o) which would be realized, for instance, for such important cases 
as purely radial motions or motions started from rest. Equation (5) shows 
that the irrotational character of the flow cannot persist, but that vorticity will 
continuously be generated at the bubble surface starting from t =  o and will 
diffuse into the liquid according to Eq. (4). In view of the parabolic nature 
of this equation we expect that at time / vorticity will be significant only in 
a spherical shell exterior to the surface r — R (/), the thickness of which can 
be estimated to be of the order of (y ( f . It is seen therefore that, for small 
enough times, the two integrals of Eq. (6) are negligible compared with the 
other terms. In these limiting, but important, situations Eq. (6) simplifies to

(7)
d2an 
cit2 + [3^ T +2(” + 2)(2” + , ) ip]

dan
dt

+  o O (n -j- i) 0  +  2)
pR 3

I d2 R
R

+  2 (n +  2) v dR
R j  ”d7

an =  o.

The viscous contribution that, in contrast with the plane case, appears in the 
last term should especially be noted here. This equation is the main result 
of this note and in the following we shall discuss some of its features.
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In the first place we observe that, for an inviscid fluid, it becomes

d2 an , 3 dR  d an 
dt2 R dt dt

+  ( ^ - 0  *» =  °>

a result already obtained by Plesset [ u ]  and Birkhoff [12] (who, however, 
disregarded the effect of surface tension), and applied by these authors to 
the study of the stability of the spherical shape for a growing or collapsing 
bubble [16, 17]. An interesting consequence of Eq. (8) is that for n =  1, 
which corresponds to translation without distortion of the bubble, one readily 
obtains the integral R 3 (/) d a jd t  =  constant, which is just a statement of the 
conservation of liquid momentum for a translating sphere of variable radius 
(see e.g. Ref. [9], Section 92; Ref. [10], Section 11). This result is of course 
exact, independent of the assumed smallness of ax. Likewise, we should 
rem ark that setting n =  1 in the second term of the coefficient of dan\dt in 
Eq- (7) gives Levich’s well-known expression for the drag force on a trans­
lating spherical bubble [18].

For a bubble of constant radius R0 Eq. (7) reduces to the equation for a 
damped harmonic oscillator the damping constant and natural frequency of 
which are

Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LXII -  febbraio 1977

ß« =  (« +  2) (2 n +  1) v/Ro 

“ om =  (n — i ) ( n  +  1) (n +  2) cr/p R^

in agreement with the results given by Lamb for a liquid of small viscosity 
(Ref. ,[9], p. 641 and p. 475 respectively). It is also interesting to point out 
that Eq. (2) for the plane case can be obtained from Eq. (7) if R  and n are 
made to tend to infinity in such a way that the wave number k  =  njR is held 
fixed. This definition of the wave number of course is in agreement with the 
expression for the wavelength X„ of the surface distortions of order n since, 
clearly, \ n =  2 nR/n. On performing this limit operation one finds

d« /  d2 R <t \
(9> - d ? - + 4 'Sv T 7 ~ E d ? - * - 7 4T  =  0 '

from which the similarity with Eq. (2) is apparent. To reconcile the two equa­
tions entirely it is sufficient to notice that, according to the physical situation 
from which Eq. (9) is obtained, d2 R/dt2 >  o implies an acceleration directed 
into the liquid. It will be observed that on performing this limit, the viscous 
contribution present in the last term of Eq. (7) drops out thus exhibiting its 
curvature-dependent nature.



Andrea ProspereTt i, On the stability of spherically symmetric flows 201

In conclusion we would like to examine more closely the conditions 
under which Eq. (7) represents an acceptable approximation to the complete 
equation, Eq. (6). For purposes of estimation we make the very crude assump­
tion that T (r , t) ~  T (R (t) , f) for R <  r  <  R +  8 (where 8 — (v t f , appro­
ximately), while T (r , f) ~  o for R +  S <  r. In this way combination of 
Eqs. (5) and (6) gives the following first-order correction to Eq. (7)

d2a I I dR  
d/2 +  \ 3 R dt +  2 (n +  2) (2 n +  1) 2 n (n -f- 1) S i  

2 n +  I R J
• 3 n (n +  2) S2 dR  I dan 

R 3 ~dt j ~ d i +  (»— 0o lr ^ T ? +(” + ,)(” +2)'^5+
I / I \ v dR

+  2 (* +  2) 11 +  2 n
r , 8 1 , 82 /dRV
[ . + 3 “1rJ + 3” rt(i f ) a- ~  o .

Upon comparison of this equation with Eq. (7) it is seen that, for n fixed, 
the following conditions should be satisfied in order that the step leading 
from (6) to (7) be legitimate

(10) S «  R .

( i l )
dR

j d t

For ordinary liquids condition (10) is not very restrictive. For instance, bubble 
phenomena in water occur on time scales of the order of 1er3 sec or less; with 
v =  0.01 cm2/sec we then have (v/)2 ■—■ 3 X 1er3 cm, which will be small 
compared to R for most cases of practical interest. On the other hand, if the 
estimate S ~  (v*)* is inserted into (11), one finds R | dR /d/ [-’, This 
condition canjbe more restrictive than (10), but not so much as to make Eq. (7) 
practically useless. For example, for a bubble executing forced radial pulsa­
tions of angular frequency co (as would be the case, for instance, for a bubble 
immersed in a sound field of wavelength much greater than R, (see. e.g. 
Ref. [19]), we may write

R =  R0 (1 +  e sin oit) ,

where s is the amplitude of the oscillations and R 0 the equilibrium radius 
of the bubble; condition (11) gives then t < (cos)-1. Therefore it is seen that 
for oscillations of small amplitude (s < 1) Eq. (7) (which would reduce in 
this case to a damped M athieu equation) is adequate to describe several features 
of the motion including the possible development of an instability of the- 
spherical shape. It should be observed that the condition (10) is not uniformly 
valid in n, in the sense that the error caused by the neglect of the terms of 
order S/R increases without bound with increasing n.
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As a final point we notice that, while the first integral in Eq. (6) disap­
pears as v —>■ o, the second integral does not. This might seem at variance 
with the result (8) obtained by Plesset and Birkhoff for an in viscid fluid. The 
contradiction however is easily resolved by observing that Eq. (8) has been 
obtained under the assumption or irrotational motion. The possible pre­
sence of a non-zero vorticity in the in viscid flow is accounted for by the term 
in question in Eq. (6). According to Kelvin’s theorem (Ref. [9], Section 33; 
Ref. [10], Section 8) this occurrence is only possible if the vorticity does not 
vanish at t =  o. In addition we also expect that in such a case vorticity is 
convected with the fluid. Both statements can be readily verified in the pre­
sent instance since, for v =  o, Eq. (4) is solved by

T (r , t ) = r *  F [r3 — R 3 (*)] ,

where F [r3 ■— R 3 (o)] =  T (r , o), and the quantity h =  r3 — R 3 (£) has 
the obvious meaning of a Lagrangian variable in the spherical geometry of 
present concern.
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