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Geometria differenziale. — On Kachlerian conharmonic recur-
rent and Kachlerian conharmonic symmetric spaces. Nota di Uparl
Pratap SingH e AwapHesH KuMarR SINGH, presentata ® dal
Socio B. SEGRE.

R1ASSUNTO. — Vengono studiati certi spazi kaeleriani ricorrenti, detti coarmonici e
coarmonici simmetrici.

1. INTRODUCTION

An 7 (= 2 m) dimensional Kaehlerian space K” is a Riemannian space
which admits a structure tensor field ¢! satisfying the relations

(1.npw ¢} o =——8;f,
(1.2) _ Pis = — Pji» (Pi5 = 9% £ag)
(I'3> fp’z%,j =0,

where the comma followed by an index denotes the operator of covariant
differentiation with respect to the metric tensor g;; of the Riemannian space.
The Riemannian curvature tensor, which we denote by R%;, is given by

=)o 8+ 3 A1 )

whereas the Ricci tensor and the scalar curvature are respectively given by
R;; = Ry and R = Ry; g%,
It is well known that these tensors satisfy the identities ([1]) ©®
(1.4) , i Ry = Ri¢],
(1.4)' : ¢i Ryj = —Riz ¢5 .
In view of equation (1.1), the relation (1.4) gives

(1.5) ¢i Ro ¢l = —R].

(*) Nella seduta del 12 febbraio 1977.

(1) All Latin indices run over the range from 1 to .-

(2) 9; = 9/3x%, where {2%} denotes real local coordinates.

(3) The numbers in square brackets refer to the references at the end of the paper.
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Also, multiplying (1.4)" by g¥, we obtain

CP% R:l = R; CP? ]
which implies
(1.6) ¢?Ri=o0.

If we define a tensor S;; by

(1.7) Sij = ¢i Rej
we have
(1.8) Sij = —S;i -

The holomorphically conharmonic curvature tensor TZ-L_,,-,c and the Bochner
curvature tensor K’{ik are given by ([3])

(1.9) Tiw = R+ Ry 8 — Ry 8t + g R — g R+ Sy o —

— S 9 + o St — o St + 2 Sy 0k + 2 945 S/ (1 + 4)
and

(1.10) Kip=Rip+ Ry d — Ry d + gu R — g RE+ Sy, o —
— St 0t 4 @i St — 01 St + 2 0% Sis + 2 ¢y SP/ (2 + 4) —
— R (g j—gn Ot + it &5 — 01 9 + 2945 G0/ [( + 2) (2 + 4)]

respectively.
The equation (1.10), in view of (1.9), may be expressed as
(r.11) Kip = T —R (g & — g 8 + o 05 —

—ou it 295 @)/[(2+2) (2 + 4)].

We shall use the following

DEeFINITION (1.1). A Kachler space satisfying ([2])
(1.12) R’iﬂ;,a = A\ Rl
for some non-zero vector field A,, will be called a Kaehlerian recurrent space.
The space K is called Kaehlerian Ricci—recurrent if it satisfies the relation
(1.13) Rie =M Ry,
then, multiplying the above equation by ¢¥ and using the fact that g% ,=o0,
we. get
(1.13) R,=xnR.

REMARK (1.1). From (1.13) it follows that every Kaehlerian recurrent
space is Kaehlerian Ricci-recurrent; but the converse is not necessarily true.
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DEFINITION (1.2). A Kaehler space is called Kaehlerian symmetric in
the sense of Cartan if it satisfies ([2])

(1.14) ' R’{jk,,, =0 or equivalently Rz, =o0.
Obviously a Kaehlerian symmetric space is Kaehlerian Ricci-symmetric, i.e.
(r.19) Rija=0.

DEFINITION (1.3). A Kaehler space in which the Bochner curvature
tensor K}y satisfies the relation

(1.15) Kige=2Kia

for some non-zero vector A,, will be called a Kaehler space with recurrent
Bochner curvature tensor, or Kaehlerian Bochner recurrent space ([2]).

In the present paper, we give several theorems in Kaehlerian conhar-
monic recurrent and Kaehlerian conharmonic symmetric spaces.

2. KAEHLERIAN CONHARMONIC RECURRENT SPACE

DEFINITION (2.1). A Kahler space satisfying the relation
V) h
(2.1) Tista =2 Tis
for some non-zero recurrence vector A,, will be called a Kaehlerian conhar-

monic recurrent space.

THEOREM (2.1). Ewery Kaekhlerian recurrent space is Kaehlerian conhar-
monic recurrent.

Proof. A Kaehlerian recurrent space is characterized by the equation
(1.12), which yields (1.13). By differentiating (1.9) covariantly with respect
to x* and using equations (1.7) and (1.13), we get

h ”
Time=2Tim,
which shows that the space is Kaehlerian conharmonic recurrent.

THEOREM (2.2). Every Kachlerian conharmonic recurremt space is a
Kachler spacé with recurrvent Bockner curvature tensor.

Proof. Let the space be Kaehlerian conharmonic recurrent. Equation
(2.1), in view of (1.9) gives

(22)  Riga+ O Ria— & R+ g0 Ryo— g6 Rho + 9} Sina—
— 05 Sit,a+ 9 Sha — @ Sha+ 20k Siza + 204 SE I + 4) =
= A [Rliz + (Rix 8 — Ry 8} + &a R} — g4 R} + Sa o —
—Sg @ + 0 S; — 2 St + 2 Sy 0k + 2 05 SP/( 4 )] .
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Multiplying the above equation by g and making some simplifications. with
the help of equations (1.4), (1.5), (1.6) and (1.7) and using also the identity
95 &7 = o, we get

(2.3) MR,—NR)=o0,
which gives

(2.9 R,—»R=o0.
Differentiating (1.11) covariantly with respect to x% we obtain

(2.5) ngk,a = T’iljk,a — R (ga 3’} — &k S+ ou <P’;' -
— o + 295 @WI[(n+2) (2 + 4]
Multiplying (1.9) by A, and subtracting from (2.5), we have
(2.6) Ko —ha Kl = Thit.a— Ao Thip — (R s — % R) (ga 8 —
— 2 O + o 0 — i 9t + 2 95 9D/ [(2 + 2) (2 + 4)] -
Using -equations (2,1) and (2.4) in (2.6), we obtain
K,iljk,a - 7‘a K’iljk =0,
which shows that the space is a Kaehler space with recurrent Bochner cur-

vature tensor.

THEOREM (2.3). The necessary and sufficient conditions for a Kaekler
space to be Kaehlevian conharmonic recurvent are that the space be of recurvent
Bochner curvature and that

R,—\R=0
holds. |

Proof. The necessary part has been proved in Theorem (2.2). For the
sufficient condition, suppose that the space be of recurrent Bochner curvature
and that v

R,—»R=0
holds.. The equation (1.11) yields | N
Kiika—h Kig = Thia— A T — R e — A R) (g 8] — 252 81 +
+ 0a 05— 9 94 -+ 2 04 B/ [(n 4 2) (2 + 9] -
This equation, after using the above mentioned conditions, gives
Time—dTin =0,

which shows that the space is Kaehlerian conharmonic recurrent. This com-
pletes the proof. -
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THEOREM (2.4). A Kachlerian conkarmonic rvecurrent space will be Kachle-
vian recurrent provided that it is Kachlevian Ricci-recurrent.

Proof. Differentiating (1.9) covariantly with respect to 2%, we obtain
@7 Tite= Rita+ O Rita— 3 Ry o+ £t Rjo— 24 Rba + ¢ Sz a—
- <P’1.E Sjk,a "I‘ Pir Sffil,a - CPjAk Si'l,a + 2 @Z Sij,a + 2 (Pij Sz,a>/(” + 4) .

Multiplying equation (1.9) by A, and subtracting from (2.7), we have
(28 Thia— e Tin = Rigahe R+ [8 (Rig — Ao Rit) —

— 8 Rpa— M Ry) + g (R e — N RY) — g (RE, — AN RD +

+ <P,} (Sik,a — e Sip) — <Pl£ (Sjk,a — XN Si) + Pa (Sg,a —2A S’Jl) —

— @(Sta—2a S + 204 Sij.a—2a Sip) + 2 045 (St .a — 2 D2 + 4).
Let the space be Kaehlerian Ricci-recurrent. Then equation (2.8) yields
(2.9) Tit,e— X Tist = Rigt,a— ha Rige »

which shows that the Kaehlerian conharmonic recurrent space is Kaehlerian
recurrent.

THEOREM (2.5). The mecessary and sufficient condition that a Kackhler
space is Kaehlevian Ricci-recurvent, is that

ok A
Tha— e Tin = Rl o — 2 Rl -

Proof. Let the space be Kaehlerian Ricci-recurrent, then the relation
(1.13) is satisfied and so the equation (2.8) reduces to

Thita—Aa Tip=Rip.—2 Rij -

Conversely, if in a Kaehler space the above equation is satisfied, then equation
(2.8) yields

(2.10) 8} (Ripa — A Rig) — 8 R, — N Rip) + gar (Rh',a — 3 R) —
‘ — g (R a— 2 RD) + &} Sitya — 2a Sie) — 9% Sjtya — 2o Sip) +
+ 06 (a2 5D — 0 Sha—2a SD + 2.6 Sije — W S) +
+ 20945 he—2SH =0.

Simplifying with the help of equations (1.4), (I 5) (1.6) and (1.7), and also
using the identity ¢;; g% = o, we get

(2.11) 4+ 2) Rig,a—2Rp) =0,
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which gives
Riga—2Ry=o0.
This shows that the space is Kaehlerian Ricci-recurrent, which completes

the proof. A
The following theorem is immediate from (2.9):

THEOREM (2.6). The necessary and sufficient condition for a Kaehlerian
Ricci-recurvent space to be Kaehlerian recurvent is that the space be Kachlerian
conharmonic recurrent.

3. KAEHLERIAN CONHARMONIC SYMMETRIC SPACE

DEeFINITION (3.1). A Kaehler space satisfying the relation
(3.1) T’i’jk’a =0, or equivalently T;u;, =0,
will be called a Kaehlerian conharmonic symmetric space.

THEOREM (3.1). Every Kachlerian symmetric space is a Kachlerian conhar-
monic Symmelric Space.

Proof. If the space is Kaehlerian symmetric, then the relations (1.14)
and (1.14) are satisfied and so the equation (2.7) gives

%
Tia=0,
which shows that the space is Kaehlerian conharmonic symmetric.

THEOREM (3.2). The necessary and sufficient condition that a Kaehlerian
conharmonic symmetric space be Kaehlevian Ricci vecurremt, with recurrence
vector Ny, is that

Rijta + 2 (Tip— Rl =o.

Proof. Since the space is Kaehlerian conharmonic symmetric, the equa-
tion (2.8) takes the form

(32)  Rliga—N R+ 2 Thn + [3 Riga— A Rip) — & Rya— A Ryp) +
+gik (Rh',a - 7\a R’}) -*gjé (R’:,a - 7\«1 R’D + (P’Jl' (Silc,a "_‘7\a Sik) -
- <P’z! (Sjk,a — e Sjk) + Pax (S?,a_ —N S,’;) - Pk (S’;,a — A S’:) +
+ 29 Sya—2S0) + 294 Sta— 2SN +4) =o0.

If the space is Kaehlerian Ricci-recurrent, the above equation reduces to

(3-3) Rlpe—h R+ 2, Ti=o0.
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Conversely, if this equation is satisfied, then proceeding as in Theorem (2.5)
it can be seen that the space is Kaehlerian Ricci-recurrent.

THEOREM (3.3). [In a Kazhlerian conharmonic symmetric space the scalar
curvature is constant.

Progf. From equations (1.9) and (3.1), we obtain
(3-3) Rijpoe=—Ripa— N Ryput+ g Ry o — g R o+ 0 Sig—
— @t Sipyat @i Sha— 0 Shat 2 Gk Sijat 2 9y Sk 4+ 4).

Multiplying this equation by g, making use of equations (1.4), (1.5), (1.6)
and (1.7), and also using the identity ¢ ¢ = o0, we get

(34) 8? R—,a =0,
which gives

(3.5) R,=o0, ie. R is a constant.
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