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Equazioni differenziali ordinarie. — On the stability of motion
and perturbation of Lyapunov functions. Nota di OLUSOLA AKINYELE,
presentata @ dal Socio G. SANSONE.

RIASSUNTO. — L’Autore con I'impiego di funzioni di Lyapunov d& criteri sufficienti,
abbastanza generali, per la equistabilita, I’ equiasintotica stabilitha, la forte equistabilitd
delle soluzioni di un sistema differenziale.

1. INTRODUCTION

We shall consider the system of differential equations:
dx
(I) ‘&t_:‘f(t)x) H x(t0>=x0

where feC(RXR" R"). Here R denotes the real line, R® the Euclidean
space and C (R xXR? R") the class of continuous functions from R XR" to R".
For any p>o0; let S(p) ={xeR":||x||<p},| -l being any convenient
norm in R®. We here consider the stability results which allow the initial time
¢y the freedom of taking any value in the interval (— oo, 0), although the
conditions imposed on the Lyapunov functions used in our study are only
for z > o.

The idea of perturbing Lyapunov functions was introduced in [1], to
discuss non-uniform properties of solutions of systems of differential equations
under weaker assumptions. The results of [1], thus clearly show how many
advantages there are in employing the perturbations of Lyapunov functions
technique in studying the boundedness and stability criteria of systems of
ordinary differential equations. In fact, the equiboundedness property was
proved without assuming conditions everywhere in R”, as in the case of uni-
form boundedness. The corresponding situation relative to equistability was
also discussed. In this paper, we use the technique of perturbing Lyapunov
functions to discuss perfect equistability ad perfect equi-asymptotic stability
of the differential system [1], under weaker assumptions. If z€ [0, co), then
we obtain the sufficient conditions for the strong equistability of system (1)
under weaker assumptions. Known results [2] on these types of stability
criteria require that certain assumptions hold everywhere in S (p), but we
shall relax this requirement by perturbing the Lyapunov functions. Our
results thus improve considerably the perfect equistability, the perfect equi-
asymptotic and the strong equistability results of [2].

(*) Nella seduta del 12 febbraio 1977.
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2. MAIN RESULTS

We give a number of definitions:
DEFINITION 2.1.

(i) The trivial solution x = o0 of (1) is perfectly equistable if for e> o,
ty € (— o0, 00), there exists a positive function § = 3 (#,,¢) which is
continuous in 7, for each ¢ > o such that the inequality

2 <9
implies

|lx(t’t0:x0>”<s l‘Zl‘o-

(i) The trivial solution x = o of (1) is perfectly equi-asymptotically stable
if (i) holds and there exist positive numbers 3y = §, (%) and T = T (¢, , ¢)
such that 2 >4, + T and || x,]| < 3, implies

|Ix(t’t07x0)ll<e'
DEFINITION 2.2.

The trivial solution x = o of (1) is said to be strongly equistable if for
any e€>0,/€lo,00) and any compact interval [%,#], there exist
n=m7() >0 and a positive function 3 = 3 (% ,¢) which is continuous
in #y for each ¢ such that if || x,[| <3,

|Ix(t)t0:x0!7)>”<€ te[to’tl]:

where x (¢, ¢, %,, ") is an n-approximate solution of (1) on [%, 4]. If & is
independent of #, the trivial solution is said to be strongly uniform stable.

Remark. The notions of strong equistability and strong uniform stabi-
lity with respect to the scalar differential equation

%:g(t,u) # (fy) =ty = O tefo, o0)

are defined as in Definition 2.2.
THEOREM 2.3. Assume that

() VieCR*XS(p), R,V (¢,%) is locally Lipt. in x for a constant
L=L(p)>o0, Vi(#,0)=0 and

DV, )< g (£, Vi (2, %),
(¢,x) € R¥ XS (p), where g,€(C(R*XR* R) and g, (¢,0)=o0.
(ii) For every ©> 0, there exists a |

Vi, €C(R¥XS ()N Se (1), RY), Se (1)
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is the complement of S (7), Va. o5 locally Lip in x,
b(lx) < Vo 2, x)<a(lxl), (¢, ) eR* XS ()OS (7),

where a,b,eC[(0, ), R*],a(w), b(n) increasing in u and a (x)— o0
as u—0 and

D+V,(z,x)+D*V,. ¢, 0)<g&¢ Vi, 2)+ V. (#,x))

Sor
(#,x) e (R*XS (p) N S° (1))
where

2€C(R*XRHR), £ (¢,0) =o0;

(iii) fe C([—o0,0]XS(p), R ,f(t,0)=0 and f(¢,x) ¢s almost periodic
in ¢t uniformly with respect to x €S, S being any compact set in S (p);

(iv) The trivial solution u = o is strongly equistable with respect to the scalar
differential equation.

(2) Ww=g¢,n , ul)=u=o0
and strongly uniformly stable with respect to the scalar differential equation
(3 wl = gy (¢, w) ’ w(t0)=w020-

Then the trivial solution of x = o of the system (1) is perfectly equistable.

Proof. Let o<e<p and #€(— oo, 00) be given. Since the trivial
solution is strongly uniform stable with respect to (3), given & () > o and
7o€ R*, and any compact interval K = [1y, 4], 3= () > 0 and a positive
39 = 8 (¢) > o such that

@) wo < 8y, implies w (¢, Ty, wy,n) < b(E),2€ 1y, 4],
where w (¢, 79, w,,7) is any solution of.
) W =gyt W)+, w(m)=w=o.

Because of the hypothesis on @ (%), there exists 8, = &, (¢) > o such that
3
) a(3) < < "

Since the trivial solution of (2) is strongly equistable, given Ez(l >o0 and

1€ R* and any compact interval K;=[1,,%4], 3 =1 >0 and
* = 3* (15, ¢) such that

¢)) uy < 8*  implies u(t,vo,uo,n,)<%,te[ro,t§],
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where % (¢, 7, %o, ;) is any solution of |

) w=g @, u)+mn , wu(t)=uy=o0.

Let x (2, 7y, x4) be a solution of (1) with x (#) = x, and choose %, =V (¢, , ).
Since V,(¢,x) is continuous and V;(#,0) = o there exists 3, = &, (,¢)

such that

©) [ %oll <& and V;(%,x) <8 hold
simultaneously. Set 8 = min {3, , 8,}; we claim that
lxoll <8 implies [[x(Z, 2,2l <<e for =4,

with zye (— oo, o0). Suppose not, then there exists a solution x(Z, #,, x,)
of (1) with ||x,]| < 8 and some ¢, %4 > #, such that

fx @ to, 20l =8 , llx(ha,to,x)]l=c¢

and

(10) k82§]|x(z‘,t0,xo)[|§g , tefn,8).

Let 8, = v >0 so there exists a V, . satisfying hypothesis (ii).
Let 1o = min {n;,m}, Ly = max {L, M} where L, and M are the Lip-

Yo
2L,
for f(¢,x) such that #,+ 0> 0. Clearly for € (— o0, 00)

schitz constants of V; and V, . respectively, and 0 be an translation number

(1) I£G+0,m—f 00 <51

if xeS any compact set in S(p).
Let

(12) m@) =V ¢+ 0,20¢,%,%)) + Vo . E+0,2¢,%,%)) t€lt,s).
For % > o,

mk(t+/4)——m(t) -
4 -

_ Vi@ AF 0,5 h b, a) + Ve G A 0,2 ¢+, 1, 2)

- Vl(i—"e:x(z’to:xo))'_.vm‘r_(t—l"e7x(t’t0!x0)) R
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lim sup Vl(t_‘_;l_{_e’x(t"l_k’t"’}’;‘i))’_vl(t—l-eyx(l‘,l‘o,xo))
h—>0

e R IIORVGEIOTER A IO

llell

where 7— >0 as /4 —o.
Similarly,
h,t -
lim ‘sup Vz,-.<l‘+/£+ 0,x(+ ,/:,,xo)) \/'2’1 ¢+ e,x<t))
h—>0 :

<M|f@¢,+0,2@))—FE,xE)I+DtV,. (¢+0,x0).

Hence

Drm@<L|f+8,2@)—fEx@O)I+M|fE+0,2)
—f,x@O+D Vo ¢+ 0, 2@)+ DV, ¢+ 0,x()
S&HC+0,Vi+0,x@)+ Ve G+ 6,2()
F2LllfE+ 0,2 =S xS+ 0,m@) -+,
‘sgg(t+e,m(t))+n tely, 4.

Let # = min{#,#4} and choose 7,+ 0 =4, and #=#,4 6, then an appli-
cation of (ii) and Theorem 1.4.1 of [2] implies that

mE)<r,¢+0,4, Vi@, 2@, te,%20) + Vo, 2,2, %) M)
where 7, (# + 0,4 ,w,,n) is the maximum solution of (5) such that
ro(t 8, wo, M) =, .
Also by (i), and Theorem 1.4.1 of [2], we have
Vi@, 2t to,xo) < (t, to, Vi(te, %) , M)

where 7, (¢, ¢y, %, ,%,) is the maximal solution of (8). By (7) and (9), we
obtain

' 3
(13) Vi (l‘1’x(t1,fo:xo>><70-
By the assumption on V, ., (6) and (1o0),

: . 3
(14) Voot x(hste, %) <a(@) < '?0 .
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Thus, since V, (#, x) > o,
6@ ="0(lx(%, %, %) ID<Ve. B+ 6,2 (®),

and

b))V, e+ 0, 2L)<Vi(e+0,2@)+ Vo (6+ 0,2 (%)

<nG+0,4, Vi, x@)+ Ve (G, x@),m).

Now by (13) and (14), 7 (%) <8, hence

b)) <rGB+0,4, Vixr @)+ Vo, (i, x#H),m)<b(e),
by (4), which is a contradiction. The theorem is therefore established.

THEOREM 2.4. Suppose the trivial solution u= o of (2) is strongly equi-
- asymptotically stable and that assumptions (i), (ii) and (iii) of Theorem 2.3 hold.
Then, if the trivial solution w = o of

(15) w=g (¢, w) , w(l) =wy=0

is strongly uniformly stable, then the trivial solution of (1) is perfectly equi-
asymprotically stable.

Proof. By Theorem 2.3, the trivial solution of (1) is perfectly equistable.
We now show that it is equi-asymptotically stable. Let o<<e< p, -and
tp€(— o0 ,00). Given b()>0 and 1€ R* 3§, =98,(s), =" () and a
compact set K = [1,,#] such that if w, < §,, then

w(t,fo,wo,"])<b(s>, le[To,tf]

where w (¢, 74, w,, %) is any solution of (15) With this 83, we can schoose
3, = &, (¢) such that

3
16) a@) <2,

and since # == 0 is strongly equi-asymptotically stable, given % and t,€ R*

and any compact set [7, £],38% = 8* (1)), m =1 () and T (7o , €) such that
<I7) u(¢)70’%0)”)1)<‘§20" ZZfO‘I‘T

where (¢, T, %y, n,) is any solution of equation (8), provided u, < 8*.
Choose u, =V, (¢,,%,). Since V;(¢,x) is continuous and V,(z,0) = o,
38, = 3; (10, p) such that

| 2o ll < 3 and 'V, (%, %) < 3% = 8* ()
hold together
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Set 3 = min {3, , 8,}, then
Nx(2,2,x)ll<ce for t>1,+T,

provided ||z, < & .
Choose 6 as in Theorem 2.3 and define

m(E)=V,@4+0,x0,2,%) F Vo, ¢-+0,20,%,x) ¢=7+T,

where 8, = 7, and x (¢, %, x,) is any solution of (1) such that | x,| < §;.
Then proceeding as in Theorem 2.3,

Dtm(t) <g(@+0,m(@+n for t>~,+T.

Choosing 0 such that 7y = #; + 0 and using the assumptions, and Theorem
1.4.1 of [2],

Vl(t_l_e’x(t))—i—vz,‘v(t—}—e!x<t))S72(t+ B:TO>V1 +V2,‘r:'n) zl2":0‘%‘1\-

Since V; (¢, x) > o, and by the assumption on V, .,
bUE@ N = Var @+ 0, 2@ S Vi@ +0,2() + Var(t+ 0, 2(9)
<7(t+0,7, Vi(t+0,2@)+ Vo ¢+ 0,2), ).
Now using condition (16), (17) and the assumptions on V, .,
Vi(t,x (2,2 ,%0) + Vo (¢, (2,4, %) <
and hence, by (17),
blz@ON<r@+06,%,Vi,+ Vo, <b(e) for t=n7+T.
Hence ||z ()] <e for #>1 + T provided |z, < & .

THEOREM 2.5. Swuppose that assumptions (2), (¢%), (#4), (v) of Theo-
rem 2.3 hold. Let f of equation (1) be such that f€C ([o, c0) XS (p) , R") and
f(¢,0)=0. Then the strong equistability of the trivial solution u = o of
equation (2) and the strong uniform stability of the trivial solution w =0 of
equation (3) imply the strong equi-stability of the trivial solution x = o of
equation (1).

- Proof. By the assumptions on the solutions # =0 and w==0 and the
same procedure of Theorem 2.3, given ¢>o0,%€ [0, o), and choosing

o=V, (to, %)) , I*=20(,c) and 8 =S8, (¢,¢)
such that

o ll < 3, and V;(%,x,) <8  hold together.
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Set § = min {§,, 3,} and let no = min {n;,n}, Ly = max {L , M}, then the
claim is that with § and 7, the trivial solution (1) is strongly equistable with
K = [#, f] where = min {{, %} and #, = 7,. If not, proceed in the same
way as in Theorem 2.3 and set

m@) :Vl(t:x(t)tnyo»+V2,82<t)x<t»t0)x0)) te[tlvtz] )
whence

Drm ()< g, m@®)+n,

and the remaining part the arguments proceeds as in Theorem 2.3, to obtain
the desired result.

REMARKS. Theorems 2.3, 2.4 and 2.5 improve significantly, the perfect
equi-stability, the perfect equi-asymptotic stability and the strong equista-
bility results in [z, § 3.18] respectively.
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