ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

BRIAN FISHER

Common fixed, point theorems on metric spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.2, p. 150–153. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_62_2_150_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — Common fixed point theorems on metric spaces. Nota di Brian Fisher, presentata (*) dal Socio B. Segre.

RIASSUNTO. — Si dimostra che, se S ed T sono applicazioni di uno spazio metrico completo limitato X in se, tale che

$$d(Sx, Ty) \le c \max \{d(x, Ty), d(y, Sx)\}$$
 (0 \le c < 1)

per tutti gli x, y di X, allora S ed T ammettono un unico punto fisso comune.

We first of all prove the following theorem:

THEOREM 1. Suppose S and T are mappings of the metric space X into itself satisfying the inequality

$$d(Sx, Ty) \le c \max \{d(x, Ty), d(y, Sx)\}$$

for all x, y in X, where $0 \le c < I$. Suppose further that S has a fixed point z. Then z is a unique common fixed point of S and T.

Proof. We have

$$d(z, Tz) = d(Sz, Tz) \le c \max \{d(z, Tz), d(z, Sz)\} = cd(z, Tz).$$

Since c < 1, it follows that z is also a fixed point of T.

Let us now suppose that w is a second fixed point of S. By what we have just proved w is also a fixed point of T and so

$$d(z, w) = d(Sz, Tw) \le c \max\{d(z, Tw), d(w, Sz)\} = cd(z, w)$$
.

The uniqueness of the common fixed point follows immediately.

By noting that

$$d\left(x\text{ , T}y\right)+d\left(y\text{ , S}x\right)\leq2\max\left\{ d\left(x\text{ , T}y\right)\text{ , }d\left(y\text{ , S}x\right)\right\}$$

we have the following

THEOREM 2. Suppose S and T are mappings of the metric space X into itself satisfying the inequality

$$d(Sx, Ty) \le c \{d(x, Ty) + d(y, Sx)\}$$

for all x, y in X, where $0 \le c < \frac{1}{2}$. Suppose further that S has a fixed point z. Then z is a unique common fixed point of S and T.

(*) Nella seduta del 12 febbraio 1977.

We now prove the following

THEOREM 3. Suppose S and T are mappings of the complete and bounded metric space X into itself satisfying the inequality

$$d(Sx, Ty) \le c \max \{d(x, Ty), d(y, Sx)\}$$

for all x, y in X, where $0 \le c < 1$. Then S and T have a unique common fixed point z.

Proof. Let x be an arbitrary point in X. Then

$$d(S^{n} x, T^{r} x) \leq c \max \{d(S^{n-1} x, T^{r} x), d(T^{r-1} x, S^{n} x)\} \leq$$

$$\leq c^{i} \max \{d(S^{n-j} x, T^{r-i+j} x) : j = 0, 1, \dots, i\}$$

for $n, r \ge i$. Since X is bounded

$$M = \sup \left\{ d(x, y) : x, y \in X \right\} < \infty.$$

For arbitrary $\varepsilon > 0$, choose N so that

$$c^{N} M < \epsilon$$
.

It follows that

$$d\left(\mathbf{S}^{n}\,x\,\,,\,\mathbf{T}^{r}\,x\right) < \varepsilon$$

for n, r > N and so

$$d(S^n x, S^m x) \le d(S^n x, T^r x) + d(T^r x, S^m x) \le 2 \varepsilon$$

for m, n, $r \ge N$. Hence $\{S^n x\}$ is a Cauchy sequence in the complete metric space X and so has a limit z in X. Similarly, $\{T^n x\}$ is a Cauchy sequence in X and since

$$d(S^n x, T^n x) < \varepsilon$$

for n > N, the sequence $\{T^n x\}$ also converges to z. We now have

$$d(z, Sz) \le d(z, T^n x) + d(T^n x, Sz) \le d(z, T^n x) + c \max \{d(T^{n-1} x, Sz), d(z, T^n x)\}$$

and on letting n tend to infinity we see that

$$d(z, Sz) < cd(z, Sz)$$
.

Since c < 1, it follows that z is a fixed point of S.

That z is a unique common fixed point of S and T, now follows from Theorem 1.

The next theorem follows immediately:

THEOREM 4. Suppose S and T are mappings of the complete and bounded metric space X into itself satisfying the inequality

$$d(Sx, Ty) \le c \{d(x, Ty) + d(y, Sx)\}$$

for all x, y in X, where $0 \le c < \frac{1}{2}$. Then S and T have a unique common fixed point z.

We finally prove two theorems for compact metric spaces. First of all we have

THEOREM 5. Suppose S and T are continuous mappings of the compact metric space X into itself satisfying either the inequality

 $d(Sx, Ty) < \max \{d(x, Ty), d(y, Sx)\},$ if $\max \{d(x, Ty), d(y, Sx)\} \neq 0$ or the equality

$$d(Sx, Ty) = 0$$
, if $\max \{d(x, Ty), d(y, Sx)\} = 0$

for all x, y in X. Then S and T have a unique fixed point z.

Proof. Suppose first of all that there exists c < I such that

$$d(Sx, Ty) \le c \max \{d(x, Ty), d(y, Sx)\}$$

for all x, y in X. The result then follows from Theorem 3, since a compact metric space is bounded.

If no such c exists, we can find a sequence of positive real numbers $\{c_n\}$ converting to zero and sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$d\left(\mathbf{S}x_{n}\,,\,\mathbf{T}y_{n}\right)>\left(\mathbf{I}\,-c_{n}\right)\,\mathrm{max}\,\left\{ d\left(x_{n}\,,\,\mathbf{T}y_{n}\right)\,,\,d\left(y_{n}\,,\,\mathbf{S}x_{n}\right)\right\}$$

for n = 1, 2, Since X is compact we can find convergent subsequences $\{x_{n(r)}\}$ and $\{y_n\}$ of $\{x_n\}$ and $\{y_n\}$ converging to x and y respectively. We then have

$$d(Sx_{n(r)}, Ty_{n(r)}) > (I - c_{n(r)}) \max \{d(x_{n(r)}, Ty_{n(r)}), d(y_{n(r)}, Sx_{n(r)})\}$$

and, on letting r tend to infinity, we see that since S and T are continuous

$$d(Sx, Ty) \ge \max \{d(x, Ty), d(y, Sx)\},\$$

giving a contradiction unless

$$x = y = Sx = Ty$$
.

Putting x = y = z, it follows that z is a common fixed point of S and T. Now suppose that S and T have a second common fixed point w. Then

$$d(z, w) = d(Sz, Tw) < \max \{d(z, Tw), d(w, Sz)\} = d(z, w),$$

giving a contradiction unless z = w. The common fixed point is therefore unique.

The final theorem follows immediately:

THEOREM 6. Suppose S and T are continuous mappings of the campact metric space X into itself satisfying either the inequality

$$d\left(\operatorname{S}x\,,\operatorname{T}y\right)<\frac{1}{2}\left\{d\left(x\,,\operatorname{T}y\right)+d\left(y\,,\operatorname{S}x\right)\right\},\qquad if\quad d\left(x\,,\operatorname{T}y\right)+d\left(y\,,\operatorname{S}x\right)\neq0$$
 or the equality

$$d(Sx, Ty) = 0$$
, if $d(x, Ty) + d(y, Sx) = 0$

for all x, y in X. Then S and T have a unique common fixed point z.

On putting S = T in Theorems 3, 4, 5 and 6 we get four special cases. The condition that X be bounded is then not needed in Theorem 4, see [1].

REFERENCE

[1] B. FISHER - A fixed point theorem, «Mathematics Magazine», 48, 223-5.