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Analisi matematica. — Common fixed point theovems on metric
spaces. Nota di Brian FisHER, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Si dimostra che, se S ed T sono applicazioni di uno spazio metrico com-
pleto limitato X in se, tale che
d(Sx,Ty) < cmax {d(x,Ty),d(y,5x)} (0<exT)

per tutti gli x,y di X, allora S ed T ammettono un unico punto fisso comune.

We first of all prove the following theorem:

THEOREM 1. Swuppose S and T are mappings of the metric space X into
itself satisfying the inequality

d(Sx,Ty) <cmax {d(x,Ty),d (v, Sx)}

for all x |y in X, where o < c <1. Suppose further that S has a fixed point z.
Then z is a unique common fixed point of S and T.

Proof. We have
d(z,Tz) =d(Sz,Tz) <cmax {d (¢, Tz),d (2,52)} = cd (2, T2).

Since ¢ < 1, it follows that z is also a fixed point of T.
Let us now suppose that w is a second fixed point of S. By what we
have just proved = is also a fixed point of T and so

d(z,w) =d Sz, Tw) < cmax {d (¢, Tw),d (w,S2)} = cd (2 ,w).

The uniqueness of the common fixed point follows immediately.
By noting that

d(x,Ty) +d(y,5x) <2max{d(x,Ty),d(y,Sx)}

we have the following

THEOREM 2. Suppose S and T are mappings of the metric space X into
itself satisfying the inequality

dSx,Ty) < c{d(x,Ty) —{—a’(y,Sx)}

Sor all x,y in X, where 0 < ¢ <}. Suppose further that S has a fixed point z.
Then z is a unique common fixed point of S and T.

*) Nella seduta del 12 febbraio 1977.
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We now prove the following

THEOREM 3. Swuppose S and T are mappings of the complete and bounded
metric space X into itself satisfying the inequality

dSx,Ty) <cmax{d(x,Ty),d(y, Sx)}

Jorall x,y in X, where 0o <c¢ <1. Then S and T have a unique common fixed
point 2.

Proof. Let x be an arbitrary point in X. Then
dS"x,Trx) <cmax{d(S" 'z, Trx),d(T 12,52} <
<c¢tmax{d(S"Jx,T~Mx):j=0,1,+,4}
for »,» > ¢ Since X is bounded
M=sup{d(x,y):x,yeX} <oco.
For arbitrary ¢ > o, choose N so that
NM<e.
It follows that
dErx, Trx) <e
for »,» >N and so
d(S"x,Smx) <d(S*x,Trx) +d(Trx,Smx) < 2¢

for m ,n,» > N. Hence {S*x} is a Cauchy sequence in the complete metric
space X and so has a limit # in X. Similarly, {T®x} is a Cauchy sequence
in X and since

dSrx,Trx) < ¢

for 2> N, the sequence {T"x} also converges to z.
We now have:

d(z,9)<d(z,Trx) + d(Trx,5) <d (2, T"x) +
-+ emax {d(T*1x,Sz2),d (2, T"x)}
and on létting »n tend to infinity we see that
d(z,52) <cd(z,52).

Since ¢ < 1, it follows that z is a fixed point of S.

That z is a unique common fixed point of S and T, now follows from
Theorem 1.
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The next theorem follows immediately:

THEOREM 4. Swuppose S and T are mappings of the complete and bounded
metric Space X into itself satisfying the inequality

dGx,Ty)<c{d(x,Ty) +d(y,S2)}

Jor all x,y in X, where o<c<y. Then S and T have a unigue common
Jixed point z.

We finally prove two theorems for compact metric spaces. First of all
we have

THEOREM 5. Swuppose S and T are continuous mappings of the compact
metric space X into itself satisfying either the inequality

d(Sx,Ty) <max {d(x,Ty),d(y,5%)}, i max{d(x,Ty),d(y,Sx)}#o0
or the equality | ,
dSx,Ty) =0, if max{d(x,Ty),d(y,Sx)} =0
Jor all x ,y in X. Then S and T have a unique fixed point z.
Proof. Suppose first of all that there exists ¢ < 1 such that

d(Sx,Ty) < cmax {d(x,Ty),4 (5, S2)

for all x,y in X.. The result then follows from Theorem 3, since a compact
metric space is bounded.

If no such ¢ exists, we can find a sequence of positive real numbers {c,}
converting to zero and sequences {#,} and {y,} in X such that

d (Sxy , Tyn) > (1 — ¢,) max {d (Fn s TV0) s @ (Y s an)}

for z =1,2,---. Since X is compact we can find convergent subsequences
{xnm} and {v,n} of {x.} and {¥,} convergmg to x and y respectively. We
then have

& Sxniry » TVnm) > (0 — ue) max {d (Fner » TYnir) » & Ve » Stnn)}
and, on letting » tend to infinity, we see that since S and T are continuous
d(Sx,Ty) = max {d(x, Ty), d (v, S2)} ,
giving a contradiction unless ‘
x=y=8Sx="Ty.

Putting x = y = 2, it follows that 2z is a common fixed point of S and T.
Now suppose that S and T have a second common fixed point w. Then

d(z,w) =d Sz, Tw) <max {d(z,Tw) ,d(w,Se)} = d(z,w),
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giving a contradiction unless z =w. The common fixed point is therefore
unique.

The final theorem follows immediately:

THEOREM 6. Swuppose S and T are continvous mappings of the campact
metric space X into dtself satisfying either the inequality

dSx,Ty) <3 {d(x,Ty) +d(y,S2)},

if dx,Ty) +d(y,Sx)#*o0
or the equality

d(Sx,Ty) =0, if dx,Ty) +d(y,Sx)=o0
Jor all x,y in X. Then S and T have a unique common fixed point z.

On putting S =T in Theorems 3, 4, 5 and 6 we get four special cases.
The condition that X be bounded is then not needed in Theorem 4, see [1]
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