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Analisi m atem atica. —■ On the motion o f a string vibrating through 
a moving ring  with a continuously variable diameter. Nota (*> del 
Corrisp. L u i g i  A m e r i o  <**>.

R iassunto. — Si studia il moto di una corda vibrante, vincolata ad attraversare un 
anello ortogonale al piano di vibrazione, con centro e diametro variabili comunque nel tempo. 
La soluzione viene ricondotta a quella di un problema eleme7itare che viene risolto esplicita­
mente.

I. Consider the vibrating string equation, in the characteristic form  
(and in the sense of distributions)'.

(l-O = ./(? ,,  vj)

where ^ =  (x +  t) 2“ % t] =  {— x  +  *) 2- t  In (1.1) 2 / ( P )  denotes the exter- 
nal force, y  (P) is the displacement from the x  axis, t  >  o is the time. We 
assume that the string, at rest, is placed on the # axis. We assume moreover 
that the free vibration of the string, in the ( x , y)  plane, is impeded by a ring 
through which the string is obliged to pass: such a ring is always orthogonal 
to the plane (x  , y), has the center in the point G (X (t) , (a (t) +  ß (0 )/2) arLd 
the diameter ß(£) — a(/ ) ;  <x.(f) and ß ( / ) > a ( / )  are arbitrary continuous func­
tions, X (t) satisfies only the Lipschitz condition | X' (t) | <  I a.e., never being 
X' (t) =  i  1 on an interval. This means that the longitudinal velocity of the 
ring cannot be greater than the velocity of a wave traveling in the string: 
moreover the equality does not hold on an interval.

The problem considered has the following analytical interpretation. 
We consider, in the (x , t) plane, a line A , x  =  X (/), and impose that the 
displacement y  ( x , /) satisfies the following pair of unilateral conditions'.

(1.2) a .( t ) < y  (X (7) , t) <  ß (/) {t >  o).

Observe that if a (f) =  ß (t) on an interval d  1 by (1.2) implies a kind of boun­
dary condition, since we impose the value of the displacement on a x 1 b: 
y  (X (f) , t) =  a (t). I f  a (t) — — 00, or ß (t) == +  00, the preceding problem 
has been solved in [1] (for another type of unilateral problems cfr. [2], [3]).

The solution will be obtained by reducing it, as in the other cases, to 
that of elementary problems', to those of Cauchy, Darboux and Goursat, we 
must add now another problem, that we shall call n aß problem, by genera­
lising the TI problem solved in [1]. By solving, at § 2, the IIaß problem, we 
can calculate the reaction o f the ring .

(*) Presentata nella seduta del 12 febbraio 1977.
(**) Istituto matematico del Politecnico di Milano.
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As we shall prove, the problem considered has one> and only one, solution, 
without imposing any condition on the nature of the impact against the 
obstacle (elastic, partially elastic, anelastic): this makes a notable difference 
from the case of the impact against a wall (cfr. [2], [3]).

2. Let us define, on the rectangle R =  OLNH =  { o < £ < / , o < y ] < / ^ }  
of the (£ , 7]) plane (fig. 1), the following TIaß problem.

Let A be a line of equation

(2.1) o <  E, <  /,

where g  (£) is a continuous, strictly increasing function, g  (o) =  o , g  (/) =  A 
Let moreo ver oc(P) and ß (P) be two continuous functions, defined on A and 
such that

(2.2) a (P) <  ß (P) VP e A OC (o) <  O <  ß (o) .

claim to calculate, R, <3 function  T (P) which satisfies the following 
conditions (ITaP problem)'.

(2.3) I) P (P) e C° ( R ) ,

2) P  (P) =  o on OL U OH ,

3) a ( P ) < T ( P ) < ß ( P )  V P e A ,

4) Supp r5, £  {P e A : r (P) =  « (P) or Y (P) =  ß (P)} ,

5) U , > 0  on every arc A ' s  A where P (P) <  ß (P ) ,

Pç, <  o on every arc A" £  A where P (P) >  a (P ) .
o

In 4) and 5) the derivative is obviously a distribution e 2 r (R); 
by 4), T (P) satisfies the homogeneous equation = 0  on the open set 
R — Supp r ^ R . — A.



1 3 6 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LX II -  febbraio 1977

We shall prove that IIaß problem has one, and only one, solution.
a) Let us observe, first of all, that 1), 4) and 5) imply (fig. 1) 

the condition

(2.4) r (C) _  r (D) -  r (B) +  r (A) >  o ,

for every rectangle S =  ABCD, with the edges respectively parallel to the 
\  and 7] axis and the vertices A and C on a A' arc. If A ,C  e A", we have

(2.5) r (C) — r (D) -  r (B) +  r (A) <  o .

b) Uniqueness. Assume that there exist two solutions, T (P) and
f  (P). By 4), f  (P) s  T (P) on A => f  (P) =  T (P) on R: hence it is suf­
ficient to prove that F (P) =  F (P) on A. Assume the contrary, that is 
r  (P0) >  P (P0), where P 0 e A. Since f  (o) =  F (o) =  o, there exists (fig. 1) 
an arc AC 3 P 0 such that f  (A) =  F (A) and f  (P) >  F (P) >  oc (P) for 
A <  P <  C (on A). We have, by 5), (2.5) and 2),

(2.6) f  (C) -  f  (A) <  ( f  (B) _  f  (A)) +  ( f  (D) -  f  (A)) =

=  (F (B') — f  (A')) +  ( f  (D") — f  (A")) =  o .

We have moreover, since F (P) <  f  (P) <  ß (P) for A <  P <  C,

(2.7) r (C) — r (A.) >  o .

Hence F (C) >  F (A) =  f  (A) >  f  (C), which is absurd.

c) Existence. In order to prove the existence of the solution F (P), 
we shall obtain, at first, the trace of T (P) on A, by assuming that it is

(2.8) oc (P) <  ß (P) VP € A ,

that is jfor o <  P <  N. Let us set moreover, in order to simplify notations, 

a ©  =  , ß ©  =  ß ( ^ ^ © )

(2'9) û(Ç) = û ^ >ir(Ç)) = r(çf^ )) . -
We have a (o) <  o =  £2 (o) <  ß (o) and let £0 >  °  be the greatest value

of Ç such that a (t) <  o and ß (t) >  o W <  it cannot be a (£0) <  o and
ß (?o) >  o. Set

(2.10) Q ( S ) = o  on o ^ ^ 0 ( ^ o c © < Ü © < ß © )

and consider the interval £,01—'/ .  There are three possibilities:

I) « (So) =  o and ß (Ç0) >  o ,

(2.11) II) a (So) <  o and ß (^0) =  o ,

III) a (S#) =  o and ß (S0) =  o .
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Let us consider the case I): in the same way we can discuss II). Let us define, 
on the triangle <: t <  <  I in the plane ( t  the following functions:

(2 12)

Since, by I),

(j) ( t  , £) =  max a (£)
^<t<i

+ ( t  , .£) =  min ß (0 .
T <t<Z

<K5o , 5o) =  «(Ço) =  Û(Ç0) < p ( Ç o ) ,

there exists an interval £0l 1 (and we shall take the largest interval) such 
that

<K$o, $ )< £($) on
Set (fig. 2)

Q(5)=<l>(5o,5)  on ^  ^  O ( y  =  ß & )  , if ^ < / ) .

If Zi <  h it is ß (^i) >  a (!•,) and we can consider the largest interval 1 
such that

Set
4 ($i. $)$:«■($) on

O (5) =  , S) on ^ ^ ( = » - 0 (5 0  =  « & ) ,  if Ç2< / ) .

In such a way, we m ay attain the value /  in a finite number of steps, 
or we obtain a sequence {i;n}, wLere £w-< 2,n+1 <  /, such that

(2.13)

Setting

o  ©  =  «1» (S2„ , 5) on ^ 52»+1

Û ©  =  >  G w ,, S) on ^ +1̂ ? 2„+2,

lim £n =  \ < l ,
n-> 00

it cannot be 2, <  /. If so, we have in fact a (£) <  ß (£) , => a (£') <  ß (£"), 
V5' and belonging to an interval ,"pHH'Ç: hence <j) (p , £) <  ß (£) on p1““1
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Since >  p for n np, we have then

ß (̂ 2w+l) :== ^  (̂ 2w-Hl) “  ^ (^2n > >̂2n+l) — 4* (P > >̂2ft+l) ^  ß (̂ 2?i+l) ) 

which is absurd. Therefore f  =  /, and setting

Q (/) =  ß (/) =  lim $ &2n , S w )  -  a (/) ,

the function D (£) is continuous on all o1-* L
Consider now the case III): we have, necessarily,

(2.14) $ (So, £) >  o , or < K £ o © < o  VSeSoT-1/ .

Assume <j) (£0 , £) >  o. Let then pn be the least value belonging to the inter­
val S'o““1 £0 +  1/«, such that

(2.15) « (pn) =  <!> , lo +  (=>a(p„) >  o ; n =  i , 2 , • • •).

Let moreover £2n (£) be the function defined on pj 1 /  as in the case I), with 
the initial value

(2.16) £in (p̂ ) — oc (pn) — <|) (pw , P») .

We shall set therefore £ln (£) =  cj> (pn , £) =  <j> (E,0 > £) on thè largest interval 
where (J> (pn , £) <  ß (£), and so on. It is pw+1 <  pw, and we shall prove that

(2.17) =  n e p ^ l .

We have in fact, by the construction made,

0 B+1 (pB) >  a (pB) =  0 B (pB) =  <j> ©  , p„) 

and moreover, on all pn+f^ /,

Û«+1 ©  <  <j> do , I) . =* ÛB+1 (p„) <  <J) ©  , P») •

Hence HB+1 (p„) =  QB(p„), => (2,17). We set then 

H ©  =  l im Q B©
(2.18) n->oo 

=»Q.(£)eC° (oM/)

on £0““*  ̂>

and a © < Ü © < ß © .

The function Q (£) has been therefore defined on o1 1 /, assuming a (£) <  ß (£) 
on o /. In the general case, we shall set Q (£) — a (Ç) =  ß (£) at every 
point I  where a =  ß, and we shall define Q (£) as before on the open 
intervals of the complementary set.

Let us give, at last, the solution T (P) of the problem IIaß.
We have VP e A , fi (P) =  Q (E, , g($))- =  Û (£), and we set moreover

(2.19) r  ß  fé > s  fé)) for ©  <  -fl <  h
’ ^  ß  Cr-1 ©  , r,) for ©  <  £ <  I ,
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where g~x is the inverse function of g . It is obvious that r  (Ç , yj) satisfies con-
o

ditions 1), 2), 3). We have, moreover, F ^  = 0  on R ■— A , =» Supp £  A.
O

Assume now a (P0) <  O (P0) <  ß (P0) , P 0GÄ: there exists then, by the 
definition of Q (£), an arc AC a  A, with P0e AC, such that O (P) =  Q (P0) 
VP G AC. We have then, by (2.19), T (P) =  T (P0) on all the corresponding 
rectangle S =  ABCD (fig. 1): hence P 0 ^ Supp , and condition 4) holds. 

Assume, at last, T (P) <  ß (P) on the arc AC =  A'c: A. We have, by
(2.19) , r (B) =  r (A) , r (D) =  r (A): therefore

r (C) — r (B) — r (D) +  r (A) =  r (C) — r (A) >  o ,

since, by the construction made, fi (P) is an increasing function on AC. We 
have then > 0  on A', =»5).

Observation I. -  Assume ß =  +  00 (or a =  ■— 00). The trace O (£) has 
then a very simple form (cfr. [1 ]):

(2.20) O (£) =  m ax oc+ (t) (or £2 (£) =  min ß~ (/)) .
o1—>£ ol—

Observation II. -  We can generalise IIaß problem if we substitute the con­
dition 2) by the condition:

(2.21) 2') T (P) =  Ç (P) on OL U OH ,

where Ç (P) e C° (OL U OH) and satisfies only the (necessary) condition

(2.22) « (p) <  Ç (o) <  ß (o ) .

Setting P =  (H, , 7]) , P ' =  (£ , o) , P " =  (o , 7)), and moreover

(2.23) r (P) =  r (P) -  (P') +  K (P") -  K (o)},

we have , and V (P) satisfies condition 2). Let us now calculate
T (P) by imposing conditions 1), 2), 3), 4), 5), where a (P) and ß (P) are sub­
stituted by oc(P) —* Ç(P') — X (P'O +  X (°) and by ß (P) — ^ (P ')  — C(P") +  
+ X  (o ),.. Therefore T (P) exists and is unique: we define afterwards T (P) 
by (2.23) and we have:

Supp r* , =  Supp £  {P G A : r  (P) =  a (P) -  Ç (PO -  C (P") +  K (o) or 

r (P) = ß (P) - 1 (PO (P") + ç (o)} =
=  {P g A : F (P) =  a (P) or F (P) =  ß (P)} .

It is moreover >  o on every arc A' where F (P) <  ß (P) — Ç (P') •—
— Ç (P") -f- £ (o), that is T (P) <  ß (P), and analogously for the opposite 
inequality.

We conclude that problem n uß, with conditions 1), 2'), 3), 4), 5) has 
one, and only one, solution: T (P) =  T  (P) +  Ç (P') +  Ç (P") — Ç (o).

10. — RENDICONTI 1977, voi. LXII, fase. 2.
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3. We apply now the preceding results in order to solve the problem 
described at § 1 (cfr. [1]). Let us consider equation (1.1) in a domain Z of 
the (x , t) plane, defined by the inequalities:

(3.1) t >  o , p ( t ) < x < q ( t ) ,

where p i t )  and q if) satisfy Lipschitz conditions, and p  if) <  q if) y/t. We 
assume moreover \p ' it) | <  1 , \ q[ (V)| <  1 a.e., without being p l if) == ±  1, or

q' (f) == d= I » on an interval: therefore we exclude that the boundary lines 
(<jp — {x =  p  it)} , Gq =  {x =  q (t)}) contain any characteristic segment. 

Suppose that there are assigned the Cauchy in itia l conditions'.:

(3.2) y  (pc , o) =  <p (x) , y t (x , o) =  <]> (x) (J> ( o ) < x  <  q (o))

and the boundary conditions'.

(3-3) >t ) =  K( t )  , y ( g ( t )  , t )  =  B (t) ( t >  o ) .

Consider now, in Z, a line A , x —  X (/), where X (/) satisfies the same type 
of conditions as p  if) and q if)y and it is (fig. 3):

(34 ) /  (0  <  X (t) <  q (t) W > 0 .

We impose that the displacement y  (x ,i)  satisfies ( i . i )  on Z — A; moreover 
y  (x  , t) must satisfy the in itia l and boundary conditions, and the inequalities

(3-5) a(P)<^(P)<ß (P) VP e A .
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The data are supposed to satisfy the following hypotheses:

(3.6) a) <p' lx) , 4» (*) e U  (J> (o)M q (o)) ,

b) A (t) , B (t) eC° (&~ +  00) , A(o) =  cp O(o)) , B (o) =  9 (q (o)),

c) «(P),P(P)eC°(A) , «(P0)<9(X(o))<ß(Po),
<0 /  (P) e L1 (ZT) VT >  o ,

where ZT == {o <  t <  T , p  (t) <  ; r<  q ■(/)} .
Let now W  be the functional class defined by the conditions:

11) w  (P) e C° (Z) ,
12) Wç (P) , (P) , Wç, (P) e V  (T, U T j ) .

In such hypotheses the free problem fo r  ( i . i )  has one, and only one, solu­
tion u (x , f) e W. We m ay obtain u ( x , t )  by a classical scheme: we solve, 
at - first, the Gauchy problem in Tj and in T2; we solve, afterwards, the 
Darboux and Goursat problems in Sx , S2 , R j , S3 , S4 , R2 • •.

Let us consider now the problem with the obstacle. Such a problem can 
be reduced, as it is classical in Mechanics, to a free problem by introducing 
the reaction of the obstacle, obviously of impulse-type. In a precise way: 
setting

(3.7) y  (P) =  « (P) +  r  ( P ) ,

we have to find a function T (P) defined by thé following conditions'.

I) r (P) e c° (Z),
II) r  (P) =  o on the boundary dZ,

III) a (P) — u  (P) <  T (P) <  ß (P) -— u (P) on A,

IV) Supp I ^ s I P e A :  r(P) =  a(P) — «(P) ,  ör P (P) =  ß (P) — u (P)},

V) r u  >  o on every arc A 'c  A where P (P) <  ß (P),
o

< 0  on every arc A"<= A where T (P) >  a (P),

VI) T (P) =  0 on Tx U T2 U Sx U S2.

It is obvious that, if T (P) satisfies conditions I) , • • - , VI), then the func­
tion y  (P) given by (3.7) will be a solution of our problem; observe that the 
condition VI) means that the impulses generated by the impact of the string 
against the obstacle do not influence the solution of the free problem at the 
exterior of the forward characteristic semicone with vertex in P 0 (9 (o) , o).

Let us prove that T (P) exists on all Z and is unique. We know in fact 
T (P), with value zero, on the lower edges, P0 N3 and P0 Qx of the rectangle 
Rx: hence we can calculate T(P) on Rx, by solving the IIa_M)ß_M problem. We 
obtain then F (P ) on S3U S 4, by solving the Darboux and Goursat problems 
for the equation =  o. Therefore the values of V (P) are known on the 
edges Px N2 and Px Q2 of the rectangle R2, and we can calculate T (P) on
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all R2 by solving problem IIa_w>ß_M (with non-zero values on the edges: § 2, 
observation II).

In such a way, we obtain the function T (P) on all Z and (3.7) gives 
the unique solution y  (P) of the problem', the reaction of the obstacle is the 
distribution .

Let us observe, lastly, that, more generally, we can determine the motion 
of the string, in presence of more obstacles of the type considered before. 
In that case, one assumes that the domain Z contains m lines A j, with the 
equations .x =  Xj (f), where p  (f) <  X} (t) <  • • • <  Xm (t) <  q (t). One assumes, 
moreover, that the displacement y  (P) satisfies, on every A j , the conditions

«;(P)<^(P)<ß;(P)-
It m ay be, for some j  , olj =  •— 00 or ßy =  +  00.

Also this problem admits one, and only one, solution, which can be obta­
ined by extending, in an obvious way, the method described for m — i.
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