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Algebra. — 7he symmetric matyic equation X, .. -X;AX,...X =B.
Nota di Nick Mousouris e A. DuaNE PoORTER, presentata ® dal
Socio B. SEGRE.

RIASSUNTO. — Si determina il numero delle soluzioni X;,- -+, X, della suddetta equa-
zione su di un campo di Galois, dove A e B designano due assegnate matrici simmetriche.

I. INTRODUCTION

Let F = GF (¢) denote the finite of ¢ = p’ elements, p odd. The trans-
pose of a matrix X is denoted by X'.

L. Carlitz [2] and John H. Hodges [5] calculated the number of solutions
X over F to the matric equation

(1.1) X'AX =B.

Carlitz found the number N, (A, B) of m X? matrices X satisfying (1.1) for
A and B symmetric, A nonsingular of order 7 and B of order ¢ and rank 7.
We refer to this as the unranked case. Hodges gave an explicit formulation
for the number N (A, B; £) of e¢X# matrices X over F of rank £ satisfying
(1.1), where A and B are symmetric, A is of order ¢ rank » and B is as above.
N (A, B; 4) is the number of ranked solutions to (1.1).

In this paper we count the number of solutions X,,---, X, over F to
the equation
(1.2) Xpoor X AXy -+ X, =B,
for A and B symmetric, where A is of order d,, rank 7 and B is of order &,
and rank 7 in both the ranked and unranked cases. N («,8,do, *,dp;m,7)
i‘epresents the number of solutions X,,---,X,, #»>1, where X; is a &; 1 Xd;
matrix, ¢ =1,---,% to (i.2), (the unranked case), and «, represent the
invariants of A and B respectively to be discussed in section 2. N («,8,do,---
coeydyym v, By oo, by, n > 1, denotes the number of solutions of (1.2)
where «,8,dy, -+, d,,7 and m have the same meaning as before and £;
is the rank of X;,7=1,-.-,#, (the ranked case). The resulting formula
for N (o, B,dy,-c*sdy;m,v, loy, -+, by is the more general formula in the
sense that by summing over all admissible ranks of X;,7 =1, % it is
possible to evaluate N («,B,dy, -, dy;m,7). For n=1 (2.2) and (2.3)
yield explicit formulations for the number of solutions to (1.1) in the unranked
and ranked cases respectively.

(*) Nella seduta del 12 febbraio 1977,
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2. NOTATION AND PRELIMINARIES

Let F be as in section 1. Matrices with elements from F are denoted by
Roman capitals A, B,---. A (s, m) denotes a matrix of s rows and = co-
lumns and A (s, 7 ; #) denotes a matrix of the same dimensions having rank 7.
I, denotes the identity matrix of order » and I (s, ;#) denotes an sXm
matrix having I, in its upper left hand corner and zeros elsewhere.

If A = A (e, ¢;m) is symmetric then A is congruent [3; 168] to a diagonal
matrix diag (&, *, %y, 0, , 0). Let 83=03(A)=0y, +,a, (clearly
3(A)# o unless 7 = 0) and let ¢ denote the generalized Legendre function
defined by ¢ («) =0,1,—1 according as « =0, a nonzero square or a non-
square of F. Then as Hodges [5; 222] notes A (A) defined by A (A) = ¢ (3 (A))
is an invariant under congruence and is called the invariant of A.

Carlitz’s formula [2; Theorem 5] for N; (A, B), the number of solutions
X (m , ) to (1.1), requires A to be nonsingular. If in (1.1) A is taken to be
symmetric, A =A(e,e;m) and B is symmetric B = B (#,¢;7) then by
Hodges argument [5; 224] (1.1) can be reduced to the equivalent matrix
equation

(2.1) X' diag (A, 0) X = B, = diag (B, 0),

where A, is symmetric and nonsingulat of order » with A (A;) = A (A) and
B, is symmetric and nonsingular of order » with A(B) = A (B,) = A(B,). The
number of solutions X (# , £) of (1.1) for A and B symmetric, A = A (e, e; m)
and B = B {#,#;7) can now be calculated from ‘

(2.2) N()\(A),)\(B),e,t;m,r)=g“”'”‘”N,(A1,B1).

Hodges’ formula for the number of solutions X (2, #; £) to (1.1) for A
and B symmetric, A=A (e,e;m) and B=DB(¢,¢;7), as corrected by
Porter and Riveland [7; 3.9] is given by
<2'3> N<)\(A>!7\(B):e:t;m:r:k)=

min(k, m)

qs(e—M)g(e__m’t_s’k-—-s)N<A1,Bl,s):
s=h : k

where A, and B, are as above, #=max (k,2—e + }n) y, N(A;, By, ) is
given explicitly in [4] and [5] and g(m, ¢, s) is the well known formula due
to Landsberg [6] for the numbers of »X# matrices of rank s given by

gm,t,s) =gt E (@ — 1) (= — I)/@i —1).

We use g, to denote g (m,m ,m).
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Finally Carlitz’s formula [2; Theorem 3] for the number of symmetric
matrices C =C (m ,m ;7), A (C) = p. is given by

(2.4) Stn,r, 0y = gnld ™" gus EC, w7,

where E (», ) denotes the number of -automorphs of C given by

r—2)/2 N
\ 291-(1'—1)/2 {1—up[b(—1) g—1]¢/2}» ;l:l; (x —_qzz—'), 7 even,
E¢,w= ? -2

2gr(r—l)lz 1—-! (I __gzi—r—(—l)"r odd.
i . .

3. THE NUMBER N («,B,dy, ", dy;m ,7)

LEMMA 1. For n>1,7 <min(dy, -, d,, m), the number of solutions
Xi(dig,d)) i =1,--+,n to (1.2), where A is symmetric, A =w(dy,d,,m),
A(A) =a, B is symmetric, B=B(d,,d,;7),\(B) =B is given by the reduc-
tion formula

uw

(3'I> N(“’B’do;';’adn;mx?)= 2 ) Z N(“’Bn—lydO,""

CTpe—1=T By—-1=-1,0,1
° xdn—x; m ) Tn—l) N (Bn—l :»B s dn—; ’ dn ) rn—l ’ 7’) S (dn—] = B.rr-l) )

where u = min (m ,dy, +,dpy) and N (o, By, dg,~ s dpyim,?p,) is of
the same form as N (a, [3 a’o, oy dyym ) for n>2 If n—1=1 then
N (‘x yBi,dod,m, 7’1) s given 5}/ (2:2), N (Bn;l ’ Bv dn——i A ,7’)
given by (2.2) adn S (dpy,7py , Pny) s given by (2.4).

Proof. To count the number of ,solution;s to (1.2) we first count the num-
ber of solutions to each of the following .matric equations

(32) Xn—-l Xl AX .- Xn—’-l =D,
(3-3) X.DX,=B.

Since A is symmetric, equation (3.2) forces D to be symmetric of order
dp—1. Fix D and let its rank be 7,_, and A(D) = Bn_l The number of solutions
to'(3.2) can be represented by N (&, Brardos sy Tpey ;7 s #py)- - ‘The number
of solutions to (3.3) is given by N (B,L_] By das a’n y#n-1+7)- In order that there
be solutions to (3.2) and (3.3) it is necessary that » <7, , <min(m ,d,,- -

n—l)

The product N (o, By dos**y@nay ;7 s 7’n-1) N(Bn_l,ﬁ Ayt s B Vet » 7
represents the number of solutions Xl, ++, X, to the system of equations (3.2)
and (3.3) for D described above. Multiplying this product by the number
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S (@ »7n »Bra) of symmetric matrices D with order 4, ,, rank 7, and
invariant §,; and summing over all possible values for 7, , and B,_, we ob-
tain the desired result (3.1).

Theorem 1 now follows from the lemma and mathematical induction.

THEOREM 1. The number N =N (a,B,dy, -, dp;m ,7), of solutions
X (dy,dv), -+, Xy(dny, dy) to the matric equation (1.2) is given &y

G.4) N=Y 3 N(u,B8,do,dy;m,r)-

ry=r Bz=0,1,~1
n-1
. ]—IIN(Bj: B @js i s 755753 S, 75, By)
J=

where s;=min(m ,dy, ,d) ,Pp=B,7,=7r,1<i,k<n—1,2>1 and
r<min(dy,: -, d,, m).

The above formulation together with the formulae for evaluating (2.2)
and (2.4) give N as an explicit function of the variables «,B,dy, -+, dy, 7
and ». We will not take the space here to list this combined formula. For
7 = 1, the number of solutions to (1.2) is given by (2.2) Hence the number
of solutions X;(d;_,,d;),Z2=1,--+,% to (1.2) can now be calculated in all
cases where solutions exist for » > 1.

4. THE NUMBER N(OC,B,do,"",dn;'é1"";kn:m:r>

In this section we obtain a formula for the number of solutions to (1.2)
in the ranked case, that is where X; = X;(d;4,d;,%),1 <7 <m The
proofs of Lemma. 2, which gives a reduction formula, and for Theorem 2, which
gives the desired result, are analogous to the proofs of Lemma 1 and Theorem 1
and will not ‘be included.

LEMMA 2. For n>1,r <min(m by, -, k), the numéerv of solutions
Xildsg,ds; £y, i =1, m of (1.2) where A is symmetric, A = A(d, ,d,,m),
AA) =a, B is symmetric, B=B(d,,dn;?),A\(B) =B is given by

N(‘x"B)do:"':dn;kly"',kn)m)r)=

= Z Z N(“’Bn—-l:do»°":dn—1;'é],"':'én—1,m,7'n_])'

Tp—1=r By_1=-1,0,1

-N (ﬁn—] ’ B s dn——l ’ dn N kn s Vn—1 s 7’) -S (dn—l s V1 s Bn—l) ’

where w=min(me, by, y) and N(a,Bpy, o, dny; iy s By, 7,7p )
is of the same form as N(o,B,do, - dpi by, kn,m,r) for n>2.
If n—1=1, then N(a,B,do,dy;b,m,r) is given by (2.3). N B,
Byduy sy by ¥na,r?) s given by (2.3) and S(dpy,7py, Bua) 5 given
by (2.4).
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THEOREM 2. The number M = N («,B,dy, -, dy; 8y, 0, by, m ,7) of
solutions Xy (do,dy; By) -+, Xy (@noy s @n; #n) of the matric equation (1.2) is
Liven by

i
(4.1) MZZ N(“:Blrdoydl;m’rl’ko'
ri==r Q]-=_1,0,1

n--1

h]:[1 N Brs Brrrs @ns @rra s 70 Phsr s Zui) S (@5 75 Ba)

where B, =B ,7, =7 and t;,=min(m by, -, k), 1<7,]<n—1,n>1
and r<<min (m , £y ,- -, ).

As in Theorem 1 all of the forms appearing on the right in (4.1) can be
calculated explicitly in terms of «,B,do, &y, %, -, #y,m and 7. The
process begins by referring to (2.3) and (2.5). We will not take the space here
to put the various formulae together to write a single explicit formula.
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