## ATTI ACCADEMIA NAZIONALE DEI LINCEI

## CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

# RENDICONTI

## NICK MOUSOURIS, A.DUANE PORTER

## The symmetric matric equation

$$X'_n \cdots X'_1 A X_1 \cdots X_n = B$$
.

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.2, p. 126–130. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA\_1977\_8\_62\_2\_126\_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Algebra. — The symmetric matric equation  $X'_n \cdots X'_1 A X_1 \cdots X_n = B$ . Nota di Nick Mousouris e A. Duane Porter, presentata (\*) dal Socio B. Segre.

RIASSUNTO. — Si determina il numero delle soluzioni  $X_1, \dots, X_n$  della suddetta equazione su di un campo di Galois, dove A e B designano due assegnate matrici simmetriche.

### INTRODUCTION

Let F = GF(q) denote the finite of  $q = p^f$  elements, p odd. The transpose of a matrix X is denoted by X'.

L. Carlitz [2] and John H. Hodges [5] calculated the number of solutions X over F to the matric equation

$$(I.I) X'AX = B.$$

Carlitz found the number  $N_t(A, B)$  of  $m \times t$  matrices X satisfying (1.1) for A and B symmetric, A nonsingular of order m and B of order t and rank r. We refer to this as the unranked case. Hodges gave an explicit formulation for the number N(A, B; k) of  $e \times t$  matrices X over F of rank k satisfying (1.1), where A and B are symmetric, A is of order e rank m and B is as above. N(A, B; k) is the number of ranked solutions to (1.1).

In this paper we count the number of solutions  $X_1, \dots, X_n$  over F to the equation

$$(1.2) X_n' \cdots X_1' A X_1 \cdots X_n = B,$$

for A and B symmetric, where A is of order  $d_0$ , rank m and B is of order  $d_n$  and rank r in both the ranked and unranked cases. N  $(\alpha, \beta, d_0, \dots, d_n; m, r)$  represents the number of solutions  $X_1, \dots, X_n, n > 1$ , where  $X_i$  is a  $d_{i-1} \times d_i$  matrix,  $i = 1, \dots, n$  to (1.2), (the unranked case), and  $\alpha, \beta$  represent the invariants of A and B respectively to be discussed in section 2. N  $(\alpha, \beta, d_0, \dots, d_n; m, r, k_1, \dots, k_n), n > 1$ , denotes the number of solutions of (1.2) where  $\alpha, \beta, d_0, \dots, d_n, r$  and m have the same meaning as before and  $k_i$  is the rank of  $X_i, i = 1, \dots, n$ , (the ranked case). The resulting formula for N  $(\alpha, \beta, d_0, \dots, d_n; m, r, k_1, \dots, k_n)$  is the more general formula in the sense that by summing over all admissible ranks of  $X_i, i = 1, \dots, n$  it is possible to evaluate N  $(\alpha, \beta, d_0, \dots, d_n; m, r)$ . For n = 1 (2.2) and (2.3) yield explicit formulations for the number of solutions to (1.1) in the unranked and ranked cases respectively.

<sup>(\*)</sup> Nella seduta del 12 febbraio 1977.

#### 2. NOTATION AND PRELIMINARIES

Let F be as in section 1. Matrices with elements from F are denoted by Roman capitals A, B,  $\cdots$ . A (s, m) denotes a matrix of s rows and m columns and A (s, m; r) denotes a matrix of the same dimensions having rank r. I, denotes the identity matrix of order r and I (s, m; r) denotes an  $s \times m$  matrix having  $I_r$  in its upper left hand corner and zeros elsewhere.

If A = A (e, e; m) is symmetric then A is congruent [3; 168] to a diagonal matrix diag ( $\alpha_1, \dots, \alpha_m$ ,  $\alpha_m$ ,  $\alpha_m$ ,  $\alpha_m$ ). Let  $\delta = \delta(A) = \alpha_1, \dots, \alpha_m$  (clearly  $\delta(A) \neq 0$  unless m = 0) and let  $\psi$  denote the generalized Legendre function defined by  $\psi(\alpha) = 0$ ,  $\alpha_m$ ,  $\alpha_m = 0$  and  $\alpha_m = 0$ , a nonzero square or a nonsquare of  $\alpha_m = 0$ . Then as Hodges [5; 222] notes  $\alpha_m = 0$ , defined by  $\alpha_m = 0$ ,  $\alpha_m = 0$ , an invariant under congruence and is called the invariant of  $\alpha_m = 0$ .

Carlitz's formula [2; Theorem 5] for  $N_t(A, B)$ , the number of solutions X(m,t) to (1.1), requires A to be nonsingular. If in (1.1) A is taken to be symmetric, A = A(e, e; m) and B is symmetric B = B(t, t; r) then by Hodges argument [5; 224] (1.1) can be reduced to the equivalent matrix equation

(2.1) 
$$X' \operatorname{diag}(A_1, o) X = B_1 = \operatorname{diag}(B_2, o),$$

where  $A_1$  is symmetric and nonsingular of order m with  $\lambda(A_1) = \lambda(A)$  and  $B_2$  is symmetric and nonsingular of order r with  $\lambda(B) = \lambda(B_1) = \lambda(B_2)$ . The number of solutions X(m,t) of (1.1) for A and B symmetric, A = A(e,e;m) and B = B(t,t;r) can now be calculated from

(2.2) 
$$N(\lambda(A), \lambda(B), e, t; m, r) = q^{(e-m)t} N_t(A_1, B_1).$$

Hodges' formula for the number of solutions X(m, t; k) to (1.1) for A and B symmetric, A = A(e, e; m) and B = B(t, t; r), as corrected by Porter and Riveland [7; 3.9] is given by

(2.3) 
$$N(\lambda(A), \lambda(B), e, t; m, r, k) =$$

$$\sum_{s=h}^{\min(k,m)} q^{s(e-m)} g(e-m, t-s, k-s) N(A_1, B_1, s),$$

where  $A_1$  and  $B_1$  are as above,  $h = \max(k, k - e + m)$ ,  $N(A_1, B_1, s)$  is given explicitly in [4] and [5] and g(m, t, s) is the well known formula due to Landsberg [6] for the numbers of  $m \times t$  matrices of rank s given by

$$g(m,t,s) = q^{s(s-1)/2} \prod_{i=1}^{s} (q^{m-i+1} - 1) (q^{t-i+1} - 1)/(q^{i} - 1).$$

We use  $g_m$  to denote g(m, m, m).

Finally Carlitz's formula [2; Theorem 3] for the number of symmetric matrices C = C(m, m; r),  $\lambda(C) = \mu$  is given by

(2.4) 
$$S(m, r, \mu) = g_m [q^{r(m-r)} g_{m-r} E(r, \mu)]^{-1},$$

where  $E(r, \mu)$  denotes the number of automorphs of C given by

$$\mathrm{E}\left(r\,,\mu\right) = \left\{ \begin{array}{l} 2\,q^{r(r-1)/2}\,\{\mathrm{I}\,-\mu\,[\psi\,(-\,\mathrm{I}\,)\,q^{-1}]^{r/2}\} \prod_{i=1}^{(r-2)/2}\,(\mathrm{I}\,-q^{2i-r}),\ r\ \mathrm{even}, \\ \\ 2\,q^{r(r-1)/2}\prod_{i=1}^{(r-1)/2}\,(\mathrm{I}\,-q^{2i-r-1}),\ r\ \mathrm{odd}. \end{array} \right.$$

## 3. The number $N(\alpha, \beta, d_0, \dots, d_n; m, r)$

LEMMA 1. For n > 1,  $r \le \min(d_0, \dots, d_n, m)$ , the number of solutions  $X_i(d_{i-1}, d_i)$ ,  $i = 1, \dots, n$  to (1.2), where A is symmetric,  $A = w(d_0, d_0, m)$ ,  $\lambda(A) = \alpha$ , B is symmetric,  $B = B(d_n, d_n; r)$ ,  $\lambda(B) = \beta$  is given by the reduction formula

(3.1) 
$$N(\alpha, \beta, d_0, \dots, d_n; m, r) = \sum_{r_{n-1}=r}^{u} \sum_{\beta_{n-1}=-1, 0, 1} N(\alpha, \beta_{n-1}, d_0, \dots \dots, d_{n-1}; m, r_{n-1}) N(\beta_{n-1}, \beta, d_{n-1}, d_n; r_{n-1}, r) S(d_{n-1}, r_{n-1}, \beta_{n-1}),$$

where  $u = \min(m, d_0, \dots, d_{n-1})$  and  $N(\alpha, \beta_{n-1}, d_0, \dots, d_{n-1}; m, r_{n-1})$  is of the same form as  $N(\alpha, \beta, d_0, \dots, d_n; m, r)$  for n > 2. If n - 1 = 1 then  $N(\alpha, \beta_1, d_0, d_1, m, r_1)$  is given by (2.2),  $N(\beta_{n-1}, \beta, d_{n-1}, d_n; r_{n-1}, r)$  is given by (2.2) adn  $S(d_{n-1}, r_{n-1}, \beta_{n-1})$  is given by (2.4).

*Proof.* To count the number of solutions to (1.2) we first count the number of solutions to each of the following matric equations

(3.2) 
$$X'_{n-1} \cdots X'_1 A X_1 \cdots X_{n-1} = D$$
,

$$(3.3) X'_n DX_n = B.$$

Since A is symmetric, equation (3.2) forces D to be symmetric of order  $d_{n-1}$ . Fix D and let its rank be  $r_{n-1}$  and  $\lambda(D) = \beta_{n-1}$ . The number of solutions to (3.2) can be represented by N( $\alpha$ ,  $\beta_{n-1}$ ,  $d_0$ ,  $\cdots$ ,  $d_{n-1}$ ; m,  $r_{n-1}$ ). The number of solutions to (3.3) is given by N( $\beta_{n-1}$ ,  $\beta$ ,  $d_{n-1}$ ,  $d_n$ ,  $r_{n-1}$ , r). In order that there be solutions to (3.2) and (3.3) it is necessary that  $r \leq r_{n-1} \leq \min(m, d_0, \cdots, d_{n-1})$ .

The product  $N(\alpha, \beta_{n-1}, d_0, \dots, d_{n-1}; m, r_{n-1}) \cdot N(\beta_{n-1}, \beta, d_{n-1}, d_n; r_{n-1}, r)$  represents the number of solutions  $X_1, \dots, X_n$  to the system of equations (3.2) and (3.3) for D described above. Multiplying this product by the number

 $S(d_{n-1}, r_{n-1}, \beta_{n-1})$  of symmetric matrices D with order  $d_{n-1}$ , rank  $r_{n-1}$  and invariant  $\beta_{n-1}$  and summing over all possible values for  $r_{n-1}$  and  $\beta_{n-1}$  we obtain the desired result (3.1).

Theorem I now follows from the lemma and mathematical induction.

THEOREM 1. The number  $N = N(\alpha, \beta, d_0, \dots, d_n; m, r)$ , of solutions  $X_1(d_0, d_1), \dots, X_n(d_{n-1}, d_n)$  to the matric equation (1.2) is given by

(3.4) 
$$N = \sum_{r_i=r}^{s_i} \sum_{\beta_k=0,1,-1} N(\alpha, \beta, d_0, d_1; m, r_1) \cdot \frac{n-1}{j-1} N(\beta_j, \beta_{j+1}, d_j, d_{j+1}; r_j, r_{j+1}) S(d_j, r_j, \beta_j),$$

where  $s_i = \min(m, d_0, \dots, d_i)$ ,  $\beta_n = \beta$ ,  $r_n = r$ ,  $1 \le i$ ,  $k \le n - 1$ , n > 1 and  $r \le \min(d_0, \dots, d_n, m)$ .

The above formulation together with the formulae for evaluating (2.2) and (2.4) give N as an explicit function of the variables  $\alpha$ ,  $\beta$ ,  $d_0$ ,  $\cdots$ ,  $d_n$ , m and r. We will not take the space here to list this combined formula. For n = 1, the number of solutions to (1.2) is given by (2.2) Hence the number of solutions  $X_i(d_{i-1}, d_i)$ ,  $i = 1, \dots, n$  to (1.2) can now be calculated in all cases where solutions exist for  $n \ge 1$ .

4. The number N 
$$(\alpha, \beta, d_0, \dots, d_n; k_1, \dots, k_n, m, r)$$

In this section we obtain a formula for the number of solutions to (1.2) in the ranked case, that is where  $X_i = X_i (d_{i-1}, d_i, k_i)$ ,  $1 \le i \le n$ . The proofs of Lemma 2, which gives a reduction formula, and for Theorem 2, which gives the desired result, are analogous to the proofs of Lemma 1 and Theorem 1 and will not be included.

LEMMA 2. For n > 1,  $r \le \min(m, k_1, \dots, k_n)$ , the number of solutions  $X_i(d_{i-1}, d_i; k_i)$ ,  $i = 1, \dots, n$  of (1.2) where A is symmetric,  $A = A(d_0, d_0, m)$ ,  $\lambda(A) = \alpha$ , B is symmetric,  $B = B(d_n, d_n; r)$ ,  $\lambda(B) = \beta$  is given by

$$\begin{split} \mathrm{N}\left(\alpha\,,\,\beta\,,\,d_{0}\,,\cdots,\,d_{n}\,;\,k_{1}\,,\cdots,\,k_{n}\,,\,m\,,\,r\right) = \\ = \sum_{r_{n-1}=r}^{u} \sum_{\beta_{n-1}=-1,0,1} \mathrm{N}\left(\alpha\,,\,\beta_{n-1}\,,\,d_{0}\,,\cdots,\,d_{n-1}\,;\,k_{1}\,,\cdots,\,k_{n-1}\,,\,m\,,\,r_{n-1}\right) \cdot \\ \cdot \mathrm{N}\left(\beta_{n-1}\,,\,\beta\,,\,d_{n-1}\,,\,d_{n}\,;\,k_{n}\,,\,r_{n-1}\,,\,r\right) \cdot \mathrm{S}\left(d_{n-1}\,,\,r_{n-1}\,,\,\beta_{n-1}\right), \end{split}$$

where  $u = \min(m, k_1, \dots, k_n)$  and  $N(\alpha, \beta_{n-1}, d_0, \dots, d_{n-1}; k_1, \dots, k_{n-1}, m, r_{n-1})$  is of the same form as  $N(\alpha, \beta, d_0, \dots, d_n; k_1, \dots, k_n, m, r)$  for n > 2. If n - 1 = 1, then  $N(\alpha, \beta, d_0, d_1; k_1, m, r)$  is given by (2.3).  $N(\beta_{n-1}, \beta, d_{n-1}, d_n; k_n, r_{n-1}, r)$  is given by (2.3) and  $S(d_{n-1}, r_{n-1}, \beta_{n-1})$  is given by (2.4).

THEOREM 2. The number  $M = N(\alpha, \beta, d_0, \dots, d_n; k_1, \dots, k_n, m, r)$  of solutions  $X_1(d_0, d_1; k_1), \dots, X_n(d_{n-1}, d_n; k_n)$  of the matric equation (1.2) is given by

(4.1) 
$$M = \sum_{r_i=r}^{t_i} \sum_{\beta_j=-1,0,1} N(\alpha, \beta_1, d_0, d_1; m, r_1, k_1) \cdot \prod_{h=1}^{n-1} N(\beta_h, \beta_{h+1}, d_h, d_{h+1}; r_h, r_{h+1}, k_{h+1}) \cdot S(d_h, r_h, \beta_h)$$

where  $\beta_n = \beta$ ,  $r_n = r$  and  $t_i = \min(m, k_1, \dots, k_i)$ ,  $1 \le i, j \le n - 1$ , n > 1 and  $r \le \min(m, k_1, \dots, k_n)$ .

As in Theorem 1 all of the forms appearing on the right in (4.1) can be calculated explicitly in terms of  $\alpha$ ,  $\beta$ ,  $d_0$ ,  $\cdots$ ,  $d_n$ ,  $k_1$ ,  $\cdots$ ,  $k_n$ , m and r. The process begins by referring to (2.3) and (2.5). We will not take the space here to put the various formulae together to write a single explicit formula.

#### REFERENCES

- [1] W. N. BAILEY (1935) Generalized Hypergeometric Series, Cambridge.
- [2] L. CARLITZ Representations by Quadratic Forms in a Finite Field, «Duke Math. J.», 21, 123-138.
- [3] L. E. DICKSON (1901) Linear Groups, Leipzig.
- [4] JOHN H. HODGES (1956) Exponential Sums for Symmetric Matrices in a Finite Field, «Mathematische Nachrichten», 15, 331-339.
- [5] JOHN H. HODGES (1965) A Symmetric Matrix Equation Over a Finite Field, «Mathematische Nachrichten», 30, 221-228.
- [6] GEORGE LANDSBERG (1893) Über eine Anzahlbestimmung und eine Damit Zusammenhägende Reihe, « Journal für die Reine und Angewandte Mathematik », 111, 87-88.
- [7] A. DUANE PORTER and A. ALLAN RIVELAND (1975) A Generalized Skew Equation Over a Finite Field, «Mathematische Nachrichten», 69, 291-296.
- [8] A. ALLAN RIVELAND and A. DUANE PORTER The Skew Matric Equation  $X'_n \cdots X'_1$   $AX_1 \cdots X_n = B$ , «Rend. Accademia Nazionale dei Lincei» (to appear).