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Geometria differenziale. — Kd/ler submanifolds satisfying a certain
condition on normal connection. Nota di Ikvo IsHIHARA, presen-
tata ® dal Socio B. SEGRE.

RIASSUNTO. — Si stabiliscono (nel §4) quattro teoremi sulle sottovarietd di Kéhler
che soddisfano alla condizione (N) qui specificata nel § 2.

§ 1. INTRODUCTION

Smyth [10] has given the classification of complex hypersurfaces of the
simply-connected complex space forms which are Einstein manifolds. Chen
and Lue [2] have studied Kihler submanifolds in a Kihler manifold, when
their normal bundle is flat, and obtained interesting results.

In this paper, we shall study Kihler submanifolds with a condition (N)
stated in § 2 in a Kihler manifold or in a complex space form and prove four
theorems.

§ 2. PRELIMINARIES

Let M” be a complex z-dimensional Kihler manifold with complex struc-
ture J and metric tensor g. We denote the covariant differentiation in M~
by V. Then the curvature tensor R of M” is given by R (X, Y) = Vx Vy —
— Vy Vx — Vix,v; for any tangent vector fields X and Y. Then, as is well
known, the curvature tensor R of M" satisfies the following formulas

@) ROX,JH=RX,V) , RX,VJ=JR(X,Y),

(22)) RX,YZ4+RY,Z)X+RZ,X)Y=o0,

(2.3) RX,Y;Z,W)=RZ,W;X,Y)=—R(¥,X;Z,W)=
=—RX,Y;W,2),

for any tangent vector fields X,Y,Z and W, where R(X,Y ;Z,W) =

=¢g(RX,Y)Z,W). Let M” be isometrically immersed in a Kzhler mani-

fold M"+? of complex dimension 7# + p as a complex submanifold. If J,2,V

and R denote the complex structure, the metric tensor, the covariant diffe-

rentiation and the curvature tensor of M7, respectively, then for any tangent

vector fields X, Y and any normal vector field N on M*, the Gauss-Weingarten
formulas are given respectively by

Vi Y =VxY+B(X,Y) , VxN=—Ax(X)+DxgN,

(*) Nella seduta dell’8 gennaio 1977.
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where § (B (X, Y),N) = ¢ (Axy (X), Y) and D is the linear connection induced
in the normal bundle T (M»)!. A and B are both called the second fundamental
form of M. Let R! be the curvature tensor associated with D in T (M")l, ie.,
R} (X,Y) =Dx Dy —DyDx—Dx,y;- Then the equations of Gauss and
Ricci are given respectively by

4 RE,Y;Z,W)=RX,Y;Z,W)+Z(BX,2),B(Y, W)
’_'g-<B<Y’Z)’B(X’W)>s
(2.5) T{(X,Y;N,N’)zRl(X,Y;N,N’)——g([AN,AN,](X),Y),

where X ,Y ,Z, W are arbitrary vector fields tangent to M* and N, N’ are
arbitrary vector fields normal to M*. Moreover, we have

(2.6) Ajw=JAx and JAy——Ay].

Thus we have Trace B = o, which means that M* is a minimal submanifold
in Mo,

In the present paper, we shall study a submanifold M” in M**? satisfying
the condition

(N) RMX, V) =g (X,IV)],

where X and Y are arbitrary vector fields tangent to M” and p is a function
on M~

§ 3. MODEL SUBMANIFOLDS IN A COMPLEX SPACE FORM

In this section, we shall give some typical model submanifolds in a com-
plex space form for later use. Let M be an n-dimensional Riemannian mani-
fold and take E,,---, E, which is a local orthonormal frame on M. Then
the Ricci tensor S and the scalar curvature » are given respectively by

S(X,Y)= X R(E;,X;Y,E) , r=YS(E,E),
4=1 =1

where X and Y are any tangent vector fields on M. An z-dimensional Rie-
mannian manifold M with Riemannian metric g is called an Einstein space
if its Ricci tensor S satisfies the condition S = 7g/»n, where » is a constant.
We call the factor #/# the Ricci curvature of the Einstein space.

A Kihler manifold M**? is called a complex space form of holomorphic
sectional curvature ¢ if the curvature tensor R satisfies

@3.1) R’(X,Y>z=§<g’<v,Z>X—g<x,Z>Y+gGY,Z>IX~

—&(JX,DJY +28(X,]V)]2).
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In the following, we denote such a M by M*# (7). Then, as is well known,
M+ (¢) is an Einstein space with Ricci curvature #/(n + p) = (# + p -+ 1) ¢/2.

We now introduce some special kinds of Kihler manifolds which will
be usefull in the present paper. Let C**2 denote complex Euclidean space of
dimension 7 + 2 with the natural complex coordinate system 2°, 2! ,- - ., 271,
P»+1(C) will denote complex the (% 4 1)-dimensional projective space,
P71 (C) is a complex analytic manifold which, when endowed with the Fubini-
Study metric, is a Kéahler manifold of constant holomorphic sectional curva-
ture 1. Then there is a natural holomorphic mapping = : C*2 — {0} — P+ (C).
The submanifold in P (C) determined by z"! = 0 is merely P*(C), the
induced metric being the Fubini-Study metric of P*(C). The submanifold
Q" in P! (C) determined by (2%% 4--- -4 (") = o is called the #-dimen-
sional complex quadric: Q» is a compact K#hler submanifold with the metric
and complex structure induced from P*+!(C). Moreover Q" is a compact
Einstein manifold if » = 2.

D7+t will denote the open unit ball in C*! endowed with the natural
complex structure and the Bergman metric. This is then a Kihler manifold
of constant holomorphic sectional curvature — 1. The submanifold of D#»+1
determined by * = o is merely D?, the induced metric being Bergman metric
of D~

The complex (# 4 1)-dimensional Euclidean space C**! endowed with
the usual Hermitian metric is a flat Kdhler manifold.

In the absence of any statement regarding metrics, each complex mani-
fold introduced above is understood to have the Kihler metric we assigned to
it above. The manifolds P*(C),C" and D" are simply-connected complete Kihler
manifolds. Moreover, any simply-connected complex space form M of complex
dimension # is (after multiplication of the metric of M by a suitable positive
constant) holomorphically isometric to P»(C),C" or D”, according as M is
of positive, zero or negative holomorphic sectional curvature (see Hawley
[3] or Igusa [4]).

§ 4. THEOREMS
We define

(Vx RH(Y,Z)N=Dx R*(Y,Z)N) —R' (Vx Y, Z)N—RY (Y,VxZ)N
—RY(Y,Z)Dx N,

for any vector fields X, Y and Z tangent to M” and any vector field N normal
toM®. The VR! is called the van der Waerden-Bortolotti covariant derivative
of R'. Then we can easily prove

VxRY(Y,2) + (W RHYZ, X) +(VzRH (X, V) =0,

which is called the second Bianchi identity.
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LEMMA 4.1. Let M* (n = 2) be a Kéhler submanifold of a Kéhler mani-
fold M™?® and assume that M* satisfies the condition (N). Then ¢ is constant
on M™.

Progf. From the condition (N), we have
) FxRY (Y,2) = (Xe)g (¥, JD)] -
By using the second Bianchi identity, we obtain
(4-2) Xe)g(Y,JZ) + (Yp)g (Z,]JX) +Zp)g(X,]JY)=0.
If we substitute Z = JY in (4.2), then we have
— X (Y, V) +({¥pg (Y, X) +(JY¥peX,]Y) =o0.
Then, assuming that X is perpendicular to Y and JY, we find
Xp)g (Y, Y)=o,
which implies that p is constant on M*. This completes the proof.

THEOREM 4.2. Let M? be a Kihler submanifold of a Kikler mandfold
M™? and assume that M* satisfies the condition (N). Then the Ricci tensors S
and S of M™ and NI™?P satisfy the following relation:

SX,Y)=S5(X,Y)—peg (X, Y)
Jor any vector fields X and Y tangent to M™

Progf. From the definition of Ricci tensors and the equation of Gauss
(2.4), we have

@3) S(XE,Y)_—_S(X,Y)—g(R(N“,X;Y,Na)-l-l_{(INa,X;Y,jNa))

Z(BE;, X), B(E;, Y),

M

where E,,---, E,, are local orthonormal vector fields tangent to M" and
Ny;,--+,N,,JN;,---,JN, are local orthonormal vector fields normal to M™.
On the other hand, from the equation of Ricci (2.5) and the condition (N),
we find

(44) RX,Y;N;,IN,) = pg (X, JY) —g ([Ane» Ajn] (X), V)
Hence, by using (2.6), we obtain
45  RX,Y;N,,JNo) =pg (X, ]JY) + 22 (JAKR(X), ).

3. — RENDICONTI 1977, vol. LXII, fasc. 1.
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By (2.2) and (2.3), we get

46) R&X,JY;Ng,JNy) =R Ny, JY; X,JN,) —R (N, , X5 JY, JNo).
Hence using (2.1) and (2.3) gives

47 R&X,JY;Ng,JNg) =—®(No, X; YV,JN,) + R(No, X; Y, Ny

On the other hand, from (2.6), we find
(4-8) ; (B, X), B(E;, V) =2 Eg(ANa X), ).

Combining (4.3), (4-5), (4.7) and (4.8), we find
SX,Y)=SX,Y)—peg(X,Y)

for any vector fields X and Y tangent to M®. This completes the proof.
From Theorem 4.2, we have immediately the following

THEOREM 4.3. Let M" (n = 2) be a Kdihler submanifold in an Einstein
Kihler manifold M™® and assume that M* satisfies the condition (N). Then
M?® is also Einstein.

THEOREM 4.4. Let M* (n = 2) be a Kdihler submanifold in a complex space
Sform M™P (¢) and assume that M* satisfies the condition (N). Then either M"
is totally geodesic or M" is am Einstein Kihler hypersurface of M™? (¢) with
scalar curvature w®c. The latter case occurs only when ¢ > o.

Proof. From (2.5), (3.1) and the condition (N), we have
(49) —g(X, TN, N) =g (X, JV)Z(N,N)—¢ ([ 2] (), V).
Substituting N’ = JN in (4.9) and using (2.6), we have
(X, INgN,N) = g (X, T (N, N) + 22 JAY (%), V),

or equivalently

(4-10) AN (X), JY) = 4 N, N)g(X, JY)

The equation (4.10) implies

(4-11) A§=iﬁ4:—‘g'<N,N>I,

where I is the identity transformation. Assuming 2 p = ¢, we find A} = o
which means Ay = 0, i.e., that M is totally geodesic. Next if we assume that
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2p7%#c¢ and p =2, then using (4.11) and A%‘Ia‘FNB = A?\;a + Ay, ANB -+
+ Ang An, + Alzqﬂ , We obtain

(4.12) AnyAng +AngAx, =0  for aF£B.
On the other hand, from (4.9) we get
(4.13) Ang Ang — Ang Ax, = 0.

The equations (4.12) and (4.13) imply Ay, Ang = 0 for a« # B which means
Ay, = o for all «, i.e., that M" is totally geodesic. When M” is a Kihler hyper-
surface, as is well known the non totally geodesic case of M” occurs only in
a complex space form of positive constant holomorphic sectional curvature
(see Takahashi [11]). This complets the proof.

From Theorem 4.4, we have immediately the following (see Smyth [1o]).

THEOREM 4.5. If n = 2, then

() P (C) and the complex quadric Q™P-1 are the only complete Kihler
submanifolds of Pm? (C) which satisfy the condition (N);

(ii) D* (resp. C®) is the only simply-connected complete Kihler subma-
nifold of D™ (resp. CMP) which satisfies the condition (N).
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