ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

BANG-YEN CHEN

Characterizations of Einstein Kaehler manifolds and applications

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **61** (1976), n.6, p. 592–595. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_61_6_592_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria differenziale. — Characterizations of Einstein Kaehler manifolds and applications. Nota di Bang-yen Chen (*), presentata (**) dal Socio B. Segre.

RIASSUNTO. — Vengono date condizioni sufficienti affinché una varietà compatta di Kaehler o coomologicamente di Einstein-Kaehler sia einsteiniana (Teorema 1, 2); se ne deducono condizioni assicuranti che un'intersezione completa in uno spazio proiettivo complesso risulti uno spazio lineare od un'iperquadrica (Teorema 3).

I. STATEMENT OF RESULTS

Let M be an *n*-dimensional compact Kaehler manifold. Let $\theta^1, \dots, \theta^n$ be a local field of unitary coframes with the Kaehler metric g and the Ricci tensor S given by

$$\begin{split} g &= \tfrac{1}{2} \, \Sigma \, (\theta^i {\otimes} \bar{\theta}^i + \bar{\theta}^i {\otimes} \theta^i) \,, \\ \mathrm{S} &= \tfrac{1}{2} \, \Sigma \, (\mathrm{R}_{i \overline{\jmath}} \, \theta^i {\otimes} \bar{\theta}^j + \bar{\mathrm{R}}_{i \overline{\jmath}} \, \bar{\theta}^i {\otimes} \theta^j) \,, \end{split}$$

respectively. The fundamental 2-form Φ and the Ricci form γ are then given respectively by

$$\Phi = \frac{\sqrt{-1}}{2} \, \Sigma \theta^i \wedge \bar{\theta}^i$$

(2)
$$\gamma = \frac{\sqrt{-1}}{4\pi} \sum_{i,j} \theta^{i} \wedge \bar{\theta}^{j}.$$

Let $[\sigma]$ denote the cohomology class represented by σ . It is well known that the first Chern class c_1 of M is represented by γ and the last de Rham cohomology group $H^{2n}(M; R)$ is generated by $[\Phi^n]$.

We put

$$\omega = [\Phi]$$

and

$$\omega^{n-k} c_1^k = a_k \omega^n, \qquad k = 0, 1, \dots, n,$$

^(*) Partially supported by National Science Foundation Grant under MCS 76-06138.

^(**) Nella seduta dell'11 dicembre 1976.

where $\omega^{n-k} c_1^k$ denotes the cup product of ω^{n-k} and c_1^k . We define the *k*-th scalar curvature ρ_k by

$$\det \left(\delta_{ij} + t \mathbf{R}_{i\bar{j}} \right) = \sum_{k=0}^{n} \binom{n}{k} \, \rho_k \, t^k,$$

where $\binom{n}{k}$ is the binomial coefficient. It is clear that $\rho_0 = 1$, ρ_1 is the (normalized) scalar curvature and $\rho_n = \det(\mathbf{R}_{ij})$.

We shall prove the following.

THEOREM 1. Let M be an n-dimensional compact Kaehler manifold. If

- (i) $a_k^2 \le a_{k-1} a_{k+1}$;
- (ii) ρ_k , ρ_{k+1} (or ρ_{k-1} , ρ_k) are positive constants,

for some k; $1 \le k \le n-1$, then M is Einsteinian, where a_i ; 1 = k-1, k, k+1, are given by $\omega^{n-i} c_1^i = a_i \omega^n$.

We say that M is cohomologically Einsteinian if $c_1 = b\omega$ for some constant b. As applications of Theorem 1 we shall prove the following [2].

THEOREM 2. Let M be an n-dimensional compact cohomological Einstein Kaehler manifold. If there exists k, $1 \le k \le n$, such that ρ_{k-1} and ρ_k are positive constants, then M is Einsteinian.

Let $P_{n+p}(C)$ be an (n+p)-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 1. An n-dimensional algebraic submanifold in $P_{n+p}(C)$ is called a *complete intersection* if M is given as an intersection of p nonsingular hypersurfaces of $P_{n+p}(C)$ in general position. A complete intersection is always a Kaehler manifold by considering the induced Kaehler metric from $P_{n+p}(C)$.

Theorem 3. Let M be an n-dimensional complete intersection in $P_{n+p}(C)$. If there exists k, $1 \le k \le n$, such that ρ_{k-1} and ρ_k are positive constants, then M is either a linear subspace or a hyperquadric in some (n+1)-dimensional linear subspace.

Remark I. Assumptions (i) and (ii) are essential. For examples: (a) Let $M = P_k(C) \times T^{n-k}$, where T^{n-k} denotes an (n-k)-dimensional complex torus with the flat metric. Then $\rho_{k+1} = 0$, ρ_k is constant and $a_k^2 > a_{k-1} a_{k+1} = 0$. (b) Let M be a algebraic hypersurface of $P_{n+1}(C)$ with degree $\neq I$, 2. Then M is cohomologically Einsteinian (see the proof of Theorem 3), in particular, we have $a_k^2 = a_{k-1} a_{k+1}$, but ρ_k , ρ_{k+1} are not constant, simultaneously.

Remark 2. If k = 1, the assumption of the constancy of ρ_{k-1} is automatically satisfied. In this case, Theorem 2 and Theorem 3 reduce to results of Kobayashi [5] and Hano [3], respectively.

Remark 3. For hypersurfaces see [1].

2. PROOF OF THEOREMS I AND 2

First we prove the following general Lemma.

LEMMA 1. Let M be an n-dimensional compact Kaehler manifold. Then

$$\int\limits_{\mathbf{M}} \rho_k * \mathbf{I} = (2 \pi)^k a_k \int\limits_{\mathbf{M}} * \mathbf{I},$$

where $\omega^{n-k} c_1^k = a_k \omega^n$ and * denotes the Hodge star operator.

Proof. Since $\omega^{n-k} c_1^k = a_k \omega^n$, there exists a (2 n - 1)-form η such that $\Phi^{n-k} \wedge \gamma^k = a_k \Phi^n + d\eta.$

From the following identities:

$$*(\Phi^{n-k}\wedge\gamma^k)=\frac{n!\;\rho_k}{(2\;\pi)^k},\qquad k=0\;,\;1\;,\cdots,n\;,$$

we find

$$\rho_k = (2 \pi)^k a_k + \frac{(2 \pi)^k}{n!} * d\eta.$$

Thus by taking integration of both sides of this equation over M and by using the identity $(* d\eta) * I = d\eta$, we get the lemma.

Now we return to the proof of Theorem 1.

From assumption (ii) ρ_k and ρ_{k+1} (or ρ_{k-1} and ρ_k) are constant, then from Lemma 1 we find

$$\int\limits_{M} \rho_{k}^{2} * I = (2 \pi)^{k} a_{k} \int\limits_{M} \rho_{k} * I = (2 \pi)^{2k} a_{k}^{2} \int\limits_{M} * I,$$

$$\int\limits_{M} \rho_{k-1} \rho_{k+1} * I = (2 \pi)^{2k} a_{k-1} a_{k+1} \int\limits_{M} * I.$$

Then by assumption (i) we find

(5)
$$\int_{\mathbb{N}} (\rho_k^2 - \rho_{k-1} \rho_{k+1}) * I \leq 0.$$

On the other hand, from the definition of ρ_k and a well-known inequality on elementary symmetric functions we have

where the equality holds if and only if (R_{ij}) is proportional to the identity matrix, i.e., M is Einsteinian. Thus from (5) and (6) we see that $\rho_k^2 = \rho_{k-1} \rho_{k+1}$ and M is Einsteinian. This proves Theorem 1.

If M is cohomologically Einsteinian, then we have

$$c_1 = b\omega$$

for some constant b. Then, by (4), we have

$$a_k = b^k,$$
 $k = 1, \dots, n.$

From these we find $a_k^2 = a_{k-1} a_{k+1}$. Thus Theorem 2 follows immediately from Theorem 1.

3. Proof of Theorem 3

Let M be a complete intersection in $P_{n+p}(C)$ given as the intersection of p nonsingular hypersurfaces M_1, \dots, M_p , in general position. Let d_a denote the degree of M_a ; $a = 1, \dots, p$. Then by a theorem of Riemann-Roch-Hirzebruch ([4, p. 159]) the first Chern class c_1 of M is given by

$$c_1 = \frac{n + p - 1 - \sum d_\alpha}{4 \pi} \omega.$$

This shows that M is cohomologically Einsteinian. Thus, if ρ_{k-1} and ρ_k are constants for some k, $1 \le k \le n$, then Theorem 2 implies that M in Einsteinian. Thus, by a result of Hano, we see that M is either a linear subspace or a hyperquadric in some (n+1)-dimensional linear subspace. This completes the proof of the theorem.

REFERENCES

- [I] B.-Y. CHEN and H.-S. LUE (1976) On the Ricci tensor of hypersurfaces of complex projective space, « J. London Math. Soc. » (2), 13, 1-4.
- [2] B.-Y. CHEN and K. OGIVE (1976) Compact Kaehler manifolds with constant generalized scalar curvature, «J. Differential Geometry», 11, 317-319.
- [3] J. I. Hano (1975) Einstein complete intersections in complex projective space, «Math. Ann. », 216, 197–208.
- [4] F. HIRZEBRUCH (1966) Topological methods in algebraic geometry, English edition, Springer, Berlin.
- [5] S. KOBAYASHI (1977) Hypersurfaces of complex projective space with constant scalar curvature, « J. Differential Geometry », 1, 369–370.
- [6] K. OGIUE (1975) Generalized scalar curvatures of cohomological Einstein Kaehler manifolds, « J. Differential Geometry », 10, 201–205.