Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Lu-San Chen, Cheh-Chih Yeh

A note on n-th order differential inequalities

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 61 (1976), n.6, p. 580-584.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1976_8_61_6_580_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Equazioni differenziali ordinarie. - A note on n-th order differential inequalities ${ }^{(*)}$. Nota di Lu-San Chen e Сheh-Chif Yeh, presentata (**) dal Socio G. Sansone.

RiAsSunto. - Gli Autori trovano un teorema di confronto tra gli integrali oscillatori di due equazioni funzionali ordinarie.
I. We consider the following functional differential equation and inequalities:

$$
\begin{equation*}
\mathrm{L}_{n} x+\mathrm{H}(t, x) \leq \mathrm{o}, \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{L}_{n} x+\mathrm{H}(t, x)=\mathrm{o}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{L}_{n} x+\mathrm{H}(t, x) \geq 0, \tag{3}
\end{equation*}
$$

where n is even and L_{n} is defined by

$$
\mathrm{L}_{0} x(t)=x(t), \mathrm{L}_{i} x(t)=r_{i}(t)\left(\mathrm{L}_{i-1} x(t)\right)^{\prime}, \quad i=\mathrm{I}, 2, \cdots, n, r_{n}(t)=\mathrm{I} .
$$

We first show that the existence of a positive solution of the inequality (I) implies the same fact for the equation (2) provided that $H(t, x)$ is positive and increasing for positive x. Similarly, we can prove that the existence of a negative solution of the inequality (3) implies the same fact for the equation (2) provided that $\mathrm{H}(t, x)$ is negative and increasing for negative x. Using these results, we obtain a criterion for the oscillation of (2) via comparison with another equation of the same type, which is oscillatory. The technique used is an adaptation of that of Kartsatos [I] which concerns the particular case.

$$
r_{1}(t)=r_{2}(t)=\cdots=r_{n-1}(t)=1
$$

A function is said to be oscillatory if it has an unbounded set of zeros. A bounded nonoscillatory function $h(t)$ is said to be of class F is there exists a $\mathrm{T}>\mathrm{o}$ such that for $t \geq \mathrm{T}$

$$
(-\mathrm{I})^{i+1} h(t) \mathrm{L}_{i} h(t) \geq 0, \quad i=\mathrm{I}, 2, \cdots, n-\mathrm{I} .
$$

(*) This research was supported by the National Science Council.
(**) Nella seduta del 13 novembre 1976.

Throughout this note, the following conditions always hold:
(i) each $r_{i}(t)$ is a continuous and positive function on $[\tau, \infty)$ and

$$
\int_{\tau}^{\infty} \frac{\mathrm{d} t}{r_{i}(t)}=\infty, \quad i=\mathrm{I}, 2, \cdots, n-\mathrm{I}
$$

(ii) $\mathrm{H}(t, x) \in \mathrm{C}[[\tau, \infty) \times \mathrm{R}, \mathrm{R}], x \mathrm{H}(t, x)>0 \quad$ for $x \neq 0$ and $\mathrm{H}(t, x)$ is nondecreasing with respect to x.
2. In order to prove that the existence of a positive solution of (1) implies the same fact for (2), we need the following Lemma, which is due to Kusano and Onose [2].

Lemma I. Let $z(t)$ be a bounded nonoscillatory solution of (1). Then $z(t)$ belongs to the class F.

The following Lemma is an improved version of Kartsatos' Lemma [r].
Lemma 2. Let $z(t)$ be a bounded positive solution of (1) for $t \geq \mathrm{T}$. If x_{0} is such that $\mathrm{O}<x_{0}<z(\mathrm{~T})$, then there exists a solution $x(t)$ of (2) such that $x(\mathrm{~T})=x_{0}, x(t) \in \mathrm{F}$ and for $t \geq \mathrm{T}$

$$
\begin{array}{cr}
0<x^{(i)}(t) \leq z^{(i)}(t), & i=0, \mathrm{I}, \\
0>(-\mathrm{I})^{i} \mathrm{~L}_{i} x(t) \geq \mathrm{L}_{i} z(t), & i=2,3, \cdots, n .
\end{array}
$$

Proof. From Lemma $\mathrm{I}, z(t) \in \mathrm{F}$. Integrating (I) from t to $u(\geq t \geq \mathrm{T})$, we have

$$
\begin{gathered}
\mathrm{L}_{n-1} z(t)=r_{n-1}(t)\left(\mathrm{L}_{n-2} z(t)\right)^{\prime} \geq \mathrm{L}_{n-1} z(u)+\int_{t}^{u} \mathrm{H}(s, z(s)) \mathrm{d} s \geq \\
\geq \int_{i}^{u} \mathrm{H}(s, z(s)) \mathrm{d} s
\end{gathered}
$$

which implies for $t \geq \mathrm{T}$

$$
\left(\mathrm{L}_{n-2} z(t)\right)^{\prime} \geq \frac{\mathrm{I}}{r_{n-1}(t)} \int_{i}^{\infty} \mathrm{H}(s, z(s)) \mathrm{d} s
$$

Integrating it from t to $u(\geq t \geq \mathrm{T})$ yields

$$
\begin{aligned}
& r_{n-2}(u)\left(\mathrm{L}_{n-3} z(u)\right)^{\prime}-r_{n-2}(t)\left(\mathrm{L}_{n-3} z(t)\right)^{\prime} \geq \\
& \geq \int_{i}^{u} \frac{\mathrm{I}}{r_{n-1}\left(u_{1}\right)} \int_{u_{1}}^{\infty} \mathrm{H}(s, z(s)) \mathrm{d} s \mathrm{~d} u_{1}
\end{aligned}
$$

and since

$$
\begin{gathered}
\left(\mathrm{L}_{n-3} z(u)\right)^{\prime} \leq \mathrm{o}, \\
r_{n-2}(t)\left(\mathrm{L}_{n-3} z(t)\right)^{\prime} \leq-\int_{i}^{\infty} \frac{\mathrm{I}}{r_{n-1}\left(u_{1}\right)} \int_{u_{1}}^{\infty} \mathrm{H}(s, z(s)) \mathrm{d} s \mathrm{~d} u_{1} .
\end{gathered}
$$

Similary, we obtain

$$
\begin{aligned}
& r_{1}(t) z^{\prime}(t) \geq \int_{i}^{\infty} \frac{1}{r_{2}\left(u_{n-2}\right)} \int_{u_{n-2}}^{\infty} \frac{1}{r_{3}\left(u_{n-3}\right)} \int_{u_{n-3}}^{\infty} \cdots \int_{u_{2}}^{\infty} \frac{1}{r_{n-1}\left(u_{1}\right)} . \\
& \cdot \int_{u_{1}}^{\infty} \mathrm{H}(s, z(s)) \mathrm{d} s \mathrm{~d} u_{1} \cdots \mathrm{~d} u_{n-2}
\end{aligned}
$$

Hence
(4) $z(t) \geq z(\mathrm{~T})+\int_{\mathrm{T}}^{t} \frac{\mathrm{I}}{r_{1}\left(u_{n-1}\right)} \int_{u_{n-1}}^{\infty} \frac{\mathrm{I}}{r_{2}\left(u_{n-2}\right)} \int_{u_{n-2}}^{\infty} \cdots \int_{u_{2}}^{\infty} \frac{\mathrm{I}}{r_{n-1}\left(u_{1}\right)}$.

$$
\begin{aligned}
& \int_{u_{1}}^{\infty} \mathrm{H}(s, z(s)) \mathrm{d} s \mathrm{~d} u_{1} \cdots \mathrm{~d} u_{n-1} \equiv \\
& \equiv z(\mathrm{~T})+\varphi(t, z), \quad t \geq \mathrm{T}
\end{aligned}
$$

Let

$$
\begin{aligned}
& x_{0}(t)=z(t) \\
& x_{n+1}(t)=x_{0}+\varphi\left(t, x_{n}\right), \quad n=1,2, \cdots .
\end{aligned}
$$

From (4) we obtain by mathematical induction that

$$
\begin{gathered}
0<x_{n}(t) \leq z(t) \\
x_{n+1}(t) \leq x_{n}(t)
\end{gathered}
$$

for $t \geq \mathrm{T}$ and $n=\mathrm{o}, \mathrm{I}, \cdots$. Therefore, there exists a function $x(t)$ such that $\lim _{n \rightarrow \infty} x_{n}(t)=x(t)$, and applying Lebesgue's theorem on monotone convergence we get

$$
x(t)=x_{0}+\varphi(t, x) .
$$

It follows easily that $x(t)$ has the desired properties.
Similarly, we have the following
Lemma 3. Let $z(t)$ be a bounded solution of (3), which is negative for $t \geq \mathrm{T}$. If x_{0} is such that $\mathrm{o}<x_{0}<z(\mathrm{~T})$, then there exists a solution $x(t)$ of (2) such that the conclusion of Lemma 2 holds.
3. Using the above three lemmas, we can prove the following theorem.

Theorem. Let the functions $\mathrm{H}_{i}(t, u), i=\mathrm{I}, 2$ be defined on $[\tau, \infty) \times \mathrm{R}$, increasing with respect to u, and $u \mathrm{H}_{i}(t, u)>0$ for $u \neq 0$. Let there exist an oscillatory function $\mathrm{P}(t)$ such that for $t \geq \tau$

$$
\mathrm{L}_{n} \mathrm{P}(t) \equiv \mathrm{Q}(t)
$$

and $\lim _{t \rightarrow \infty} \mathrm{P}(t)=0$. If

$$
\begin{array}{ll}
\mathrm{H}_{1}(t, u) \leq \mathrm{H}_{2}(t, u), \quad t \geq \tau, & u>0 \\
\mathrm{H}_{1}(t, u) \geq \mathrm{H}_{2}(t, u), \quad t \geq \tau, & u<0
\end{array}
$$

and every bounded solution of

$$
\begin{equation*}
\mathrm{L}_{n} x+\mathrm{H}_{1}(t, x)=\mathrm{Q}(t) \tag{5}
\end{equation*}
$$

is oscillatory, then every bounded solution of

$$
\begin{equation*}
\mathrm{L}_{n} x+\mathrm{H}_{2}(t, x)=\mathrm{Q}(t) \tag{6}
\end{equation*}
$$

is also oscillatory.
Proof. Let (6) be nonoscillatory. Then there exists at least one bounded nonoscillatory solution $z(t)$ of (6). Let $z(t)>0$ for $t \geq \mathrm{T}$. Then $u(t) \equiv$ $\equiv z(t)-\mathrm{P}(t)$ is an eventually positive solution of the equation

$$
\mathrm{L}_{n} u(t)+\mathrm{H}_{2}(t, u(t)+\mathrm{P}(t))=0
$$

Since $z(t)=u(t)+\mathrm{P}(t)>0$ for $t \geq \mathrm{T}$, which implies

$$
\mathrm{L}_{n} u(t)<0 \quad \text { for } \quad t \geq \mathrm{T}
$$

Hence $u(t)$ has to be eventually of constant sign. If $u(t)<0$ for t large enough, then $\mathrm{P}(t)>-u(t)>0$ for t large enough, a contradiction to the oscillatory character of $\mathrm{P}(t)$. Hence $u(t)>0$ eventually. From Lemma I , there is a $\mathrm{T}_{1} \geq \mathrm{T}$ such that for $t \geq \mathrm{T}_{1}$

$$
u(t)>0 \quad, \quad u^{\prime}(t)>0 .
$$

Let T_{1} be large enough so that we also have $|\mathrm{P}(t)|<c<u\left(\mathrm{~T}_{1}\right)$ for $t \geq \mathrm{T}_{1}$, where c is a positive constant. Hence for $t \geq \mathrm{T}_{1}$,

$$
\mathrm{L}_{n} u(t)+\mathrm{H}_{1}(t, u(t)+\mathrm{P}(t)) \leq \mathrm{L}_{n} u(t)+\mathrm{H}_{2}(t, u(t)+\mathrm{P}(t))=0 .
$$

It follows, from Lemma 1 , that

$$
\mathrm{L}_{n} u(t)+\mathrm{H}_{1}(t, u(t)+\mathrm{P}(t)) \leq 0
$$

has a solution $u(t) \in \mathrm{F}$. Now it is easy to show the existence of a positive solution to the integral equation

$$
\begin{equation*}
\vartheta(t)=c+\varphi(t, \vartheta+\mathrm{P}), \quad t \geq \mathrm{T}_{1} \tag{7}
\end{equation*}
$$

We only have to note that if

$$
\begin{gathered}
\vartheta_{0}(t)=u(t) \\
\vartheta_{n+1}(t)=c+\varphi\left(t, \vartheta_{n}+\mathrm{P}\right), \quad n=\mathrm{I}, 2, \cdots,
\end{gathered}
$$

then $\mathrm{H}\left(t, \vartheta_{n}(t)+\mathrm{P}(t)\right)>0$ for each n, because $\vartheta_{n}(t)+\mathrm{P}(t)>c+\mathrm{P}(t)>0$ for $t \geq \mathrm{T}_{1}$. Differentiating (7) n times, we obtain

$$
\mathrm{L}_{n} \vartheta(t)+\mathrm{H}(t, \vartheta(t)+\mathrm{P}(t))=0 .
$$

Letting $y(t)=\boldsymbol{v}(t)+\mathrm{P}(t)$, we get for $t \geq \mathrm{T}_{1}$

$$
\begin{equation*}
\mathrm{L}_{n} y(t)+\mathrm{H}(t, y(t))=\mathrm{Q}(t) . \tag{8}
\end{equation*}
$$

Since $\vartheta(t)+\mathrm{P}(t) \geq c+\mathrm{P}(t)>0$, it follows from Lemma 2 that (8) has an eventually positive solution, a contradiction. Similarly using Lemmas i and 3 , we can prove the case for an eventually negative solution of equation (6).

References

[1] A. G. Kartsatos (1975) - On n-th order differential inequalities, "J. Math. Anal. Appl.», 52, $\mathrm{I}-9$.
[2] T. Kusano and H. Onose (1976) - Remarks on the oscillatory behavior of solution of functional differential equations with deviating arguments, "Hiroshima Math. J.», 6, 183-189.

