Lu-San Chen, Cheh-Chih Yeh

A note on n-th order differential inequalities

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_61_6_580_0>
Equazioni differenziali ordinarie. — A note on n-th order differential inequalities \(^{(1)}\). Nota di Lu-San Chen e Cheh-Chih Yeh, presentata \(^{(2)}\) dal Socio G. Sansone.

RIASSUNTO. — Gli Autori trovano un teorema di confronto tra gli integrali oscillatori di due equazioni funzionali ordinarie.

1. We consider the following functional differential equation and inequalities:

\[
\begin{align*}
(1) & \quad L_n x + H(t, x) \leq 0, \\
(2) & \quad L_n x + H(t, x) = 0, \\
(3) & \quad L_n x + H(t, x) \geq 0,
\end{align*}
\]

where \(n \) is even and \(L_n \) is defined by

\[
L_0 x(t) = x(t), \quad L_i x(t) = r^i(t)L_{i-1} x(t), \quad i = 1, 2, \ldots, n, r_n(t) = 1.
\]

We first show that the existence of a positive solution of the inequality (1) implies the same fact for the equation (2) provided that \(H(t, x) \) is positive and increasing for positive \(x \). Similarly, we can prove that the existence of a negative solution of the inequality (3) implies the same fact for the equation (2) provided that \(H(t, x) \) is negative and increasing for negative \(x \). Using these results, we obtain a criterion for the oscillation of (2) via comparison with another equation of the same type, which is oscillatory. The technique used is an adaptation of that of Kartsatos \([1]\) which concerns the particular case.

\[
r_1(t) = r_2(t) = \cdots = r_{n-1}(t) = 1.
\]

A function is said to be oscillatory if it has an unbounded set of zeros. A bounded nonoscillatory function \(h(t) \) is said to be of class F if there exists a \(T > 0 \) such that for \(t \geq T \)

\[
(-1)^{i+1} h(t)L_i h(t) \geq 0, \quad i = 1, 2, \cdots, n - 1.
\]

\(^{(1)}\) This research was supported by the National Science Council.

\(^{(2)}\) Nella seduta del 13 novembre 1976.
Throughout this note, the following conditions always hold:

(i) each \(r_1(t) \) is a continuous and positive function on \([\tau, \infty)\) and

\[
\int_{\tau}^{\infty} \frac{dt}{r_1(t)} = \infty, \quad i = 1, 2, \ldots, n - 1,
\]

(ii) \(H(t, x) \in C \left((\tau, \infty) \times \mathbb{R}, \mathbb{R} \right) \), \(xH(t, x) > 0 \) for \(x \neq 0 \) and \(H(t, x) \) is nondecreasing with respect to \(x \).

2. In order to prove that the existence of a positive solution of (1) implies the same fact for (2), we need the following Lemma, which is due to Kusano and Onose [2].

Lemma 1. Let \(z(t) \) be a bounded nonoscillatory solution of (1). Then \(z(t) \) belongs to the class \(F \).

The following Lemma is an improved version of Kartsatos’ Lemma [1].

Lemma 2. Let \(z(t) \) be a bounded positive solution of (1) for \(t \geq T \). If \(x_0 \) is such that \(0 < x_0 < z(T) \), then there exists a solution \(x(t) \) of (2) such that \(x(T) = x_0 \), \(x(t) \in F \) and for \(t \geq T \)

\[
0 < x^{(i)}(t) \leq z^{(i)}(t), \quad i = 0, 1,
\]

\[
o > (-1)^i L_i x(t) \geq L_i z(t), \quad i = 2, 3, \ldots, n.
\]

Proof. From Lemma 1, \(z(t) \in F \). Integrating (1) from \(t \) to \(u (\geq t \geq T) \), we have

\[
L_{n-1}z(t) = \frac{r_{n-1}(t)}{L_{n-1}z(t)} \geq L_{n-1}z(u) + \int_t^u H(s, z(s)) \, ds \geq
\]

\[
\int_t^u H(s, z(s)) \, ds,
\]

which implies for \(t \geq T \)

\[
(L_{n-2}z(t))' \geq \frac{1}{r_{n-1}(t)} \int_t^\infty H(s, z(s)) \, ds.
\]

Integrating it from \(t \) to \(u (\geq t \geq T) \) yields

\[
r_{n-2}(u) (L_{n-3}z(u))' - r_{n-2}(t) (L_{n-3}z(t))' \geq
\]

\[
\geq \int_t^u \frac{1}{r_{n-1}(u)} \int_{u_1}^\infty H(s, z(s)) \, ds \, du_1,
\]
and since
\[(L_{n-3} z(\mu))' \leq 0 ,\]

\[r_{n-2}(t) (L_{n-3} z(\mu))' \leq - \int_{t}^{\infty} \int_{u_1}^{\infty} \frac{1}{r_{n-1}(\mu_1)} H(s, z(s)) \, ds \, du_1 .\]

Similarly, we obtain
\[r_1(t) z'(t) \geq \int_{t}^{\infty} \int_{u_{n-2}}^{\infty} \int_{u_{n-3}}^{\infty} \cdots \int_{u_2}^{\infty} \int_{u_1}^{\infty} \frac{1}{r_{n-1}(\mu_1)} H(s, z(s)) \, ds \, du_1 \cdots du_{n-2} .\]

Hence
\[(4) \quad z(t) \geq z(T) + \int_{T}^{t} \int_{u_{n-1}}^{\infty} \int_{u_{n-2}}^{\infty} \cdots \int_{u_2}^{\infty} \int_{u_1}^{\infty} \frac{1}{r_{n-1}(\mu_1)} H(s, z(s)) \, ds \, du_1 \cdots du_{n-1} = z(T) + \varphi(t, z) , \quad t \geq T .\]

Let
\[x_0(t) = z(t) , \quad x_{n+1}(t) = x_0 + \varphi(t, x_n) , \quad n = 1, 2, \ldots .\]

From (4) we obtain by mathematical induction that
\[0 < x_n(t) \leq z(t) , \quad x_{n+1}(t) \leq x_n(t) ,\]
for \(t \geq T\) and \(n = 0, 1, \ldots\). Therefore, there exists a function \(x(t)\) such that \(\lim_{n \to \infty} x_n(t) = x(t)\), and applying Lebesgue's theorem on monotone convergence we get
\[x(t) = x_0 + \varphi(t, x) .\]

It follows easily that \(x(t)\) has the desired properties.

Similarly, we have the following

Lemma 3. Let \(z(t)\) be a bounded solution of (3), which is negative for \(t \geq T\). If \(x_0\) is such that \(0 < x_0 < z(T)\), then there exists a solution \(x(t)\) of (2) such that the conclusion of Lemma 2 holds.
3. Using the above three lemmas, we can prove the following theorem.

Theorem. Let the functions \(H_i(t, u), i = 1, 2 \) be defined on \([\tau, \infty) \times \mathbb{R}\), increasing with respect to \(u \), and \(uH_i(t, u) > 0 \) for \(u \neq 0 \). Let there exist an oscillatory function \(P(t) \) such that for \(t \geq \tau \)

\[
L_n P(t) \equiv Q(t)
\]

and \(\lim_{t \to \infty} P(t) = 0 \). If

\[
H_1(t, u) \leq H_2(t, u), \quad t \geq \tau, \quad u > 0
\]

\[
H_1(t, u) \geq H_2(t, u), \quad t \geq \tau, \quad u < 0
\]

and every bounded solution of

\[
L_n x + H_1(t, x) = Q(t)
\]

is oscillatory, then every bounded solution of

\[
L_n x + H_2(t, x) = Q(t)
\]

is also oscillatory.

Proof. Let (6) be nonoscillatory. Then there exists at least one bounded nonoscillatory solution \(z(t) \) of (6). Let \(z(t) > 0 \) for \(t \geq T \). Then \(u(t) \equiv z(t) - P(t) \) is an eventually positive solution of the equation

\[
L_n u(t) + H_1(t, u(t) + P(t)) = 0.
\]

Since \(z(t) = u(t) + P(t) > 0 \) for \(t \geq T \), which implies

\[
L_n u(t) < 0 \quad \text{for} \quad t \geq T.
\]

Hence \(u(t) \) has to be eventually of constant sign. If \(u(t) < 0 \) for \(t \) large enough, then \(P(t) > -u(t) > 0 \) for \(t \) large enough, a contradiction to the oscillatory character of \(P(t) \). Hence \(u(t) > 0 \) eventually. From Lemma 1, there is a \(T_1 \geq T \) such that for \(t \geq T_1 \)

\[
u(t) > 0, \quad u'(t) > 0.
\]

Let \(T_1 \) be large enough so that we also have \(|P(t)| < \epsilon < u(T_1) \) for \(t \geq T_1 \), where \(\epsilon \) is a positive constant. Hence for \(t \geq T_1 \),

\[
L_n u(t) + H_1(t, u(t) + P(t)) \leq L_n u(t) + H_2(t, u(t) + P(t)) = 0.
\]

It follows, from Lemma 1, that

\[
L_n u(t) + H_1(t, u(t) + P(t)) \leq 0.
\]
has a solution $u(t) \in F$. Now it is easy to show the existence of a positive solution to the integral equation

$$(7) \quad \vartheta(t) = c + \varphi(t, \vartheta + P), \quad t \geq T_1.$$

We only have to note that if

$$\vartheta_0(t) = u(t)$$

$$\vartheta_{n+1}(t) = c + \varphi(t, \vartheta_{n} + P), \quad n = 1, 2, \ldots,$$

then $H(t, \vartheta_n(t) + P(t)) > 0$ for each n, because $\vartheta_n(t) + P(t) > c + P(t) > 0$ for $t \geq T_1$. Differentiating (7) n times, we obtain

$$L_n \vartheta(t) + H(t, \vartheta(t) + P(t)) = 0.$$

Letting $y(t) = \vartheta(t) + P(t)$, we get for $t \geq T_1$

$$(8) \quad L_n y(t) + H(t, y(t)) = Q(t).$$

Since $\vartheta(t) + P(t) \geq c + P(t) > 0$, it follows from Lemma 2 that (8) has an eventually positive solution, a contradiction. Similarly using Lemmas 1 and 3, we can prove the case for an eventually negative solution of equation (6).

References
