ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Laura Castellano

Sulla risoluzione di alcune classi di equazioni quasi-ellittiche ed ellittico-paraboliche di ordine 2 N.

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **61** (1976), n.5, p. 396–400. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_61_5_396_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni a derivate parziali. — Sulla risoluzione di alcune classi di equazioni quasi-ellittiche ed ellittico-paraboliche di ordine 2 N. Nota di Laura Castellano, presentata (*) dal Socio C. Miranda.

SUMMARY. — An existence and uniqueness theorem of Dirichlet's problem for a quasi-elliptic equation is stated; making use of this theorem an evolution equation is also solved.

Utilizzando degli opportuni spazi di Sobolev con peso, M. Troisi [11] ha studiato problemi al contorno per equazioni quasi-ellittiche in un dominio limitato $\Omega = \Omega_1 \times \cdots \times \Omega_k \subseteq \mathbb{R}^n$. Indicato con A un operatore differenziale lineare quasi-ellittico e con B_{ij} degli operatori differenziali lineari di frontiera, egli ha ottenuto teoremi di esistenza e unicità per il problema

$$Au = f$$

$$B_{ii} u = 0$$

nelle ipotesi, tra le altre, che il coefficiente di u in A sia singolare sulla parte angolosa S della frontiera di Ω oppure che la quasi-ellitticità di A degeneri su S. Egli elimina queste ipotesi nel caso che sia $\Omega = \Omega_1 \times \Omega_2$, A sia fortemente quasi ellittico e le condizioni al contorno siano quelle di Dirichlet omogenee.

In questa Nota viene presentato un teorema di esistenza ed unicità per il problema di Dirichlet omogeneo relativo ad un operatore differenziale a coefficienti reali quasi-ellittico non verificante le ipotesi menzionate. Tale teorema, conseguito con tecniche classiche, opportunamente modificando e utilizzando anche risultati di Troisi [11], viene poi adoperato per risolvere, con la teoria dei semigruppi, il problema di Cauchy

$$D_t u + Au = f$$
$$u(0) = u_0$$

in cui A è l'operatore (non coercivo) studiato precedentemente. Viene perciò risolto un problema di Dirichlet in $\Omega \times$]o ,T[per una equazione ellittico–parabolica non quasi–ellittica. Nel caso che A sia l'operatore fortemente quasi–ellittico studiato da Troisi tale problema è ancora risolubile e si ha così un nuovo risultato per una equazione quasi–ellittica.

- 1. Sia Ω un aperto di \mathbb{R}^n del tipo $\Omega = \mathbb{X} \times]a$, b[con \mathbb{X} aperto limitato di \mathbb{R}^{n-1} con frontiera localmente lipschitziana. Per ogni $x' = (x'_1, \dots, x'_n)$ poniamo $x'_n = y$.
 - (*) Nella seduta del 13 novembre 1976.

Indichiamo con N, M_0 ed M tre numeri interi non negativi tali che N è pari e $N > M_0 \ge M$; consideriamo le n-ple $m = (2 N, \dots, 2 N, 2 M)$ e $q = \left(1, \dots, 1, \frac{2 N}{2 M}\right)$ se è M > 0, e, per ogni n-pla $\alpha = (\alpha_1, \dots, \alpha_n)$ di interi non negativi, poniamo: $|\alpha| = \alpha_1 + \dots + \alpha_n$, $(\alpha, q) = \alpha_1 + \dots + \alpha_{n-1} + \alpha_n (2 N/2 M)$ se è M > 0, $(\alpha, q) = |\alpha|$ se è M = 0 e $\alpha_n = 0$, $D^{\alpha} = \frac{2^{|\alpha|}}{3x_1' \dots 3x_n'}$, $D_y^{\alpha} = D^{\alpha}$ nel caso $\alpha_1 = \dots = \alpha_{n-1} = 0$.

Consideriamo quindi l'operatore

$$(\mathrm{I})\quad \mathrm{A}\left(x',\mathrm{D}\right) = \sum_{\left(\alpha,q\right)\leq\mathrm{N}} (-\mathrm{I})^{\left|\beta\right|} \, \mathrm{D}^{\beta} \left(a_{\alpha\beta}\left(x'\right)\mathrm{D}^{\alpha}\right) + (-\mathrm{I})^{\mathrm{M}_{0}} \, \mathrm{D}_{y}^{\mathrm{M}_{0}} \left(b\left(x'\right)\mathrm{D}_{y}^{\mathrm{M}_{0}+1}\right)$$

a coefficienti reali e verificante la seguente condizione di forte quasi-ellitticità rispetto al multi-indice m: esiste $\mu \in]0$, $+\infty[$ tale che

(2)
$$\mathscr{R} e \sum_{\substack{\langle \alpha, q \rangle = \mathbf{N} \\ \langle \beta, q \rangle = \mathbf{N}}} (i)^{\alpha + \beta} a_{\alpha \beta}(x') \, \xi^{\alpha + \beta} \ge \mu \left(\sum_{k=1}^{n-1} |\xi_k|^{2\mathbf{N}} + \delta |\xi_n|^{2\mathbf{M}} \right)$$

per ogni $x' \in \overline{\Omega}$ e $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, essendo $\delta = 0$ nel caso M = 0. Osserviamo che A è quasi-ellittico rispetto al multi-indice $m = (2 \text{ N}, \dots$

 $q_0 = \left(1, \dots, 1, \frac{2N}{2M_0 + 1}\right)$ se, come supponiamo, è $b\left(x'\right) \neq 0$; poniamo perciò anche $q_0 = \left(1, \dots, 1, \frac{2N}{2M_0 + 1}\right)$ $e\left(\alpha, q_0\right) = \left(\alpha_1 + \dots + \alpha_{n-1} + \alpha_n \frac{2N}{2M_0 + 1}\right)$. Sia S_X una parte chiusa della frontiera δX di X, poniamo

$$\partial_{\mathbf{X}} \Omega = (\partial \mathbf{X} - \mathbf{S}_{\mathbf{X}}) \times]a$$
 , $b[$, $\partial_{a} \Omega = \mathbf{X} \times \{a\}$, $\partial_{b} \Omega = \mathbf{X} \times \{b\}$

ed infine

$$S = \Im\Omega - \{ \Im_X \Omega \cup \Im_a \Omega \cup \Im_b \Omega \} .$$

Definiamo poi in $\overline{\Omega}$ la funzione $\rho(x') = \frac{1}{d\sqrt{2}} \operatorname{dist}(x', S)$ dove d è un fissato numero reale > 1 e $\geq \frac{1}{\sqrt{2}} \sup_{x' \in \overline{\Omega}} \operatorname{dist}(x', S)$; per ogni s reale indichiamo con $W_s^{2N}(\Omega)$ lo spazio delle funzioni reali u tali che $\rho^{s+\langle \alpha,q_0\rangle-2N}$. $D^a u \in L^2(\Omega)$ per $\langle \alpha,q_0\rangle \leq 2$ N, munito della norma:

$$\parallel u \parallel_{\mathrm{W}^{2\mathrm{N}}_{\mathfrak{s}}(\mathbb{C})} = \sum_{\langle \alpha, q_0 \rangle \leq 2\mathrm{N}} \mid \mathrm{D}^{\alpha} u \mid_{\mathfrak{s} + \langle \alpha, q_0 \rangle - 2\mathrm{N}}$$
,

dove, per ogni r reale si è posto $|u|_r = \|\rho^r u\|_{L^2(\Omega)}$; indichiamo inoltre con $L^2_s(\Omega)$ lo spazio delle funzioni reali u tali che $\rho^s u \in L^2(\Omega)$ munito della norma $|u|_s$.

Al fine di precisare le condizioni su $\partial\Omega$ cui si richiede che soddisfi la soluzione u del problema, osserviamo che l'operatore A(x',D) è propriamente quasi-ellittico di tipo N su $\partial_X \Omega$ e di tipo M_0+1 o M_0 su $\partial_\alpha \Omega$ e M_0 o M_0+1

su $\partial_b \Omega$ secondo che ivi risulti $b\left(x'\right) > 0$ oppure $b\left(x'\right) < 0$, dove per operatore A $\left(x',\, D\right)$ propriamente quasi-ellittico di tipo h su una parte $H \subseteq \partial \Omega$ intendiamo un operatore che goda della seguente proprietà: detta $P_0\left(x',\,\xi\right)$ la parte principale del polinomio associato ad A $\left(x',\, D\right)$, per ogni $x' \in H$, per ogni vettore reale $\xi_1 \neq 0$ tangente in x' ad H e per ogni vettore reale $\xi_2 \neq 0$ normale in x' ad H ed orientato verso l'interno di Ω , l'equazione $P\left(x',\,\xi_1+z\xi_2\right)=0$ nell'incognita z ha h radici con parte immaginaria positiva.

Supponiamo che per ogni $x' \in \overline{\Omega}$ sia b(x') > 0, il problema di Dirichleti studiato è allora il seguente:

(3)
$$u \in \mathbf{W}_s^{2N}(\Omega)$$

(4)
$$Au + \lambda u = f \qquad f \in L_s^2(\Omega), \qquad \lambda \text{ reale}$$

(5)
$$\frac{\partial^{k} u}{\partial v^{k}} = 0 \qquad \text{su} \quad \partial_{X} \Omega \qquad \text{per} \quad k = 0, \dots, N-1$$

$$\text{su} \quad \partial_{a} \Omega \qquad \text{per} \quad k = 0, \dots, M_{0}$$

$$\text{su} \quad \partial_{b} \Omega \qquad \text{per} \quad k = 0, \dots, M_{0}-1$$

essendo v il vettore normale esterno ad Ω nel generico punto di $\partial \Omega - S$. Facciamo le seguenti ipotesi:

- a₁) Esiste un ricoprimento di $\ni X \longrightarrow S_X$ costituito da un numero finito di aperti I_1, \dots, I_k di R^{n-1} disgiunti da S_X e tali che ad ogni I_i sia possibile associare un omeomorfismo α_i di classe C^{∞} di \overline{I}_i sul cilindro $\{x \in R^{n-1}: x_1^2 + \dots + x_{n-2}^2 \le 1, -1 \le x_{n-1} \le I\}$ il quale trasformi $I_i \cap X$ nell'insieme $\{x \in R^{n-1}: x_1^2 + \dots + x_{n-2}^2 < 1, x_{n-1} = 0; \text{ sia soddisfatta inoltre la seguente condizione di compatibilità: se } I_i \cap I_j \neq \emptyset \text{ esiste un omeomorfismo } \beta_{ij} \text{ di classe } C^{\infty} \text{ e a Jacobiano positivo di } \alpha_i (I_i \cap I_j) \text{ su } \alpha_j (I_i \cap I_j) \text{ tale che } \alpha_j(x) = \beta_{ij} (\alpha_i(x)) \text{ per ogni } x \in I_i \cap I_j$.
- a₂) Esistono una funzione $\sigma(x') \in C^{\infty}(\overline{\Omega} S) \cap C^{0,1}(\overline{\Omega})$ e due costanti positive c_1 e c_2 tali che per ogni $x' \in \overline{\Omega}$ si abbia: $c_1 \circ (x') \leq \sigma(x') \leq c_2 \circ (x')$.
- $\begin{array}{ll} (a_3) \ a_{\alpha\beta} \in C^o(\overline{\Omega}) \ \ \textit{per} \ \ \langle \alpha \,, \, q \rangle = \langle \beta \,, \, q \rangle = N \,, \, a_{\alpha\beta} \in L^\infty(\Omega) \ \ \text{per} \ \ \langle \alpha + \beta \,, \, q \rangle \\ (2 \ N \,, \, b \in C^o(\overline{\Omega})) \,, \ \ o \geq D_y \, b \in L^\infty(\Omega) \, \ \textit{e} \ D_y \, b \leq o \, \, \textit{se} \ \ M_0 > o. \end{array}$
- $\begin{array}{lll} & a_4 \text{) } \textit{Per ogni } \alpha \text{, } \beta, & \textit{per ogni } \gamma \leq \beta \text{, } \rho^{2N-\langle \alpha+\gamma,q\rangle} \, D^{\beta-\gamma} \, a_{\alpha\beta} \in L^{\infty}(\Omega), \\ \rho^{2N-\langle M_0+1+\alpha,q\rangle} \, D^{\alpha}_y \, b \in L^{\infty}(\Omega) & \textit{per } |\alpha| = \alpha_n \leq M_0 \text{, } a_{\alpha\beta} \in C^{|\beta|} \, (\overline{\Omega} S) & \textit{per } \langle \alpha \text{, } q \rangle = \langle \beta \text{, } q \rangle = N. \end{array}$
- a_5) Per la funzione $\sigma(x')$ di cui all'ipotesi a_2) esistono delle costanti c_a tali che per ogni α e per ogni $x' \in \Omega$ si abbia: $|D^{\alpha} \sigma(x')| \leq c_{\alpha} \sigma^{-|\alpha|+1}(x')$. Vale il

TEOREMA I. Nelle ipotesi a_1 , \dots , a_4) esiste $\lambda_0 > 0$ tale che per $\lambda \ge \lambda_0$ il problema (3)–(5) ha per s = N una e una sola soluzione; se in particolare

nell'operatore $A \in M_0 = 0$, nell'ulteriore ipotesi a_5) esistono $\lambda_0 > 0$ e $s_0 \in]0$, $\frac{1}{2}[$ tali che il problema (3)–(5) ha una e una sola soluzione per ogni $\lambda \geq \lambda_0$ e per ogni $s \in [N - s_0, N + s_0]$.

2. Consideriamo ancora le seguenti ipotesi:

b₁) Esiste una funzione $\sigma(x') \in C^{\infty}(\overline{\Omega} - S) \cap C^{0,1}(\overline{\Omega})$ tale che per ogni α esiste $c_{\alpha} > 0$: $|D^{\alpha} \sigma| \leq c_{\alpha} \sigma^{-|\alpha|+1} e \sigma(x') = \rho(x')$ in un intorno di S,

TEOREMA II. Nelle ipotesi a_1 , a_2 e b_2 l'operatore

—
$$A:u\in W_{s}^{2N}\left(\Omega$$
 , $\Im/\Im v
ight)\subset L_{s-N}^{2}\left(\Omega
ight)$ $ightarrow$ — $Au\in L_{s-N}^{2}\left(\Omega
ight)$

è generatore infinitesimale di un semigruppo di classe C_0 per s=N; se in particolare è $M_0=0$, sostituendo l'ipotesi a_2) con la b_1) si ha che esiste $s_0\in]0$, $\frac{1}{2}[$ tale che la tesi è ancora valida per ogni $s\in [N-s_0]$.

Un teorema di questo tipo vale anche per un operatore fortemente quasiellittico in $\Omega = \Omega_1 \times \Omega_2 \subseteq \mathbb{R}^n$.

I dettagli e le dimostrazioni dei teoremi qui presentati sono esposti in un lavoro che sarà pubblicato su «Ricerche di Matematica».

Bibliografia

- R. A. ADAMS (1975) Sobolev Spaces, « Pure and Appl. Math., Ser. of Monogr. », 65, New York.
- [2] S. AGMON (1965) Lectures on elliptic boundary value problems. Van Nostr. Math. Studies, Princeton.
- [3] M. L. BENEVENTO Sul problema del tipo di Dirichlet per operatori ellittico-parabolici di ordine 2 s quasi ellittici nelle zone di degenerazione. Sarà pubblicato su « Ricerche di Mat. ».
- [4] M. L. BENEVENTO, T. BRUNO e L. CASTELLANO (1976) Esistenza ed unicità di una soluzione generalizzata del problema del tipo di Dirichlet relativo ad una classe di operatori ellittico-parabolici del IV ordine degeneri in una o più direzioni, «Ricerche di Math.», 25, 81-100.
- [5] A. CANFORA (1977) Teoremi di esistenza e unicità per un problema al contorno relativo ad una equazione ellittico-parabolica di ordine 2 M, «Ricerche di Mat.», 26.
- [6] E. GIUSTI (1967) Equazioni quasi-ellittiche e spazi $\mathcal{L}^{p,\theta}(\Omega, \delta)$, «Ann. di Mat.», 75, 313–353.
- [7] J. L. LIONS e E. MAGENES (1968) Problèmes aux limites non homogènes et applications, Dunod Ed., Paris.

- [8] E. HILLE e R. PHILLIPS (1957) Functional Analysis and semi-groups, «Amer. Math. Soc. », Providence.
- [9] C. MIRANDA (1962) Teoremi di unicità in domini non limitati e teoremi di Liouville per le soluzioni dei problemi al contorno relativi alle equazioni ellittiche, «Ann. di Mat.», 59, 189-212.
- [10] J. NECAS (1967) Les methodes directes en théorie des équations elliptiques, Mason et Cie Ed., Paris, Academia Ed., Prague.
- [11] M. TROISI (1971) Problemi al contorno con condizioni omogenee per le equazioni quasiellittiche, « Ann. di Mat. », 90, 331-412.
- [12] M. TROISI (1966) Problemi ellittici con dati singolari, «Ann. di Mat.», 83, 363-407.
- [13] K. Yosida, (1968) Functional Analysis, Springer Verlag, Berlin-New York.