ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

LU-SAN CHEN, CHEH-CHIH YEH

On the positive bounded Solutions of linear delay higher order differential equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **61** (1976), n.5, p. 376–381. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_61_5_376_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni differenziali ordinarie. — On the positive bounded solutions of linear delay higher order differential equations (*). Nota di Lu-San Chen e Cheh-Chih Yeh, presentata (**) dal Socio G. Sansone.

RIASSUNTO. — Si danno condizioni sufficienti perché l'equazione

$$L_n x(t) + (-1)^{n+1} a(t) x(g(t)) = 0$$

abbia soluzione positiva limitata.

I. Introduction

In this paper we consider the n-th order (n > 1) linear delay differential equation

$$L_n x(t) + (-1)^{n+1} a(t) x(g(t)) = 0,$$

where the differential operator L_n is defined by

$$\mathbf{L}_{0}x\left(t\right)=x\left(t\right)$$
 , $\mathbf{L}_{i}x\left(t\right)=r_{i}\left(t\right)\left(\mathbf{L}_{i-1}x\left(t\right)\right)'$, $i=1$, 2 , \cdots , n , $r_{n}\left(t\right)=1$

and the functions $r_i(t)$ $(i=1,\cdots,n-1)$ are positive at least on $[\tau,\infty)$, $\tau>0$. Let n be an integer, n>1, a(t) be a positive continuous function on $[\tau,\infty)$ and let G be the set to which g(t) belongs if and only if g(t) is a nonnegative, nondecreasing, unbounded continuous function on $[\tau,\infty)$ such that $g(t) \leq t$ whenever $t \geq \tau$. Let G^0 be the subset of G to which g(t) belongs if and only if g(t) is in G and g(t) < t whenever $t > \tau$.

We give here some conditions to ensure that (I) has a positive bounded solutions. The technique used is an adaptation of that of Lovelady [I] which concerns the particular case $r_1(t) = r_2(t) = \cdots = r_{n-1}(t) = I$. In what follows the term "solution" is always used only for such solutions x(t) of (I) which are defined for all large t.

2. LEMMAS

To obtain our results we need the following two lemmas. The first of them is due to Lovelady [2], and the second is an improved version of another Lovelady's Lemma [1].

- (*) This research was supported by the National Science Council.
- (**) Nella seduta del 13 novembre 1976.

LEMMA I. Let v(t) be a positive bounded solution of

(2)
$$L_{n} y(t) + (-1)^{n+1} a(t) y(t) = (-1)^{n} \varphi(t),$$

where $\varphi(t)$ is a positive continuous function on $[\tau, \infty)$. Let

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}t}{r_i(t)} = \infty , \qquad (i = 1, \dots, n-1)$$

and

$$(C_2)$$
 $H[r_1, \dots, r_{n-1}; a(s)]$

$$\equiv \int_{-r_1}^{\infty} \frac{1}{r_1\left(s_1\right)} \int_{s_1}^{\infty} \frac{1}{r_2\left(s_2\right)} \cdots \int_{s_{n-2}}^{\infty} \frac{1}{r_{n-1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{\infty} a\left(s\right) ds ds_{n-1} \cdots ds_1 = \infty.$$

If $k = 1, 2, \dots, n$, then $u_k(t)$ is monotone, $\lim_{t \to \infty} u_k(t) = 0$ and there exists $t_b \ge \tau$ such that for $t \ge t_b$

$$u_k(t) \ge 0$$
 if k is odd,

$$u_k(t) \le 0$$
 if k is even,

where

$$u_{1}(t) = y(t), u_{2}(t) = r_{1}(t) u'_{1}(t), \dots, u_{n}(t) = r_{n-1}(t) u'_{n-1}(t).$$

LEMMA 2. Suppose that the conditions (C_1) and (C_2) hold. Let $\psi(t)$ be a positive continuous function on $[\tau, \infty)$. Suppose also that $\psi(t) \leq \varphi(t)$ for $t \geq \tau$, and that there exists a positive bounded solution y(t) of (2). Then there exists a positive bounded solution x(t) of

(3)
$$L_n x(t) + (-1)^{n+1} a(t) x(t) = (-1)^n \psi(t)$$

on $[\tau, \infty)$ such that

$$x(t) \leq y(t)$$

for $t > \tau$.

Proof. We define the following functions on $[\tau, \infty)$

$$u_{1}(t) = y(t), u_{2}(t) = r_{1}(t) u'_{1}(t), \dots, u_{n}(t) = r_{n-1}(t) u'_{n-1}(t).$$

Then, by Lemma 1, we obtain for $k = 1, 2, \dots, n$

$$\lim_{t\to\infty}u_k(t)=0.$$

Integrating (2) n-1 times and using (4) we obtain

(5)
$$-u_1'(t) = \frac{1}{r_1(t)} H(r_2, \dots, r_{n-1}; \varphi(s) + a(s) y(s)).$$

and

(6)
$$y(t) = u_1(t) = H(r_1, \dots, r_{n-1}; \varphi(s) + a(s) y(s))$$

for $t \ge \tau$. It follows from (5), (6) and $\varphi(s) \ge \psi(s)$ that

(7)
$$-y'(t) \ge \frac{1}{r_1(t)} H(r_2, \dots, r_{n-1}; \psi(s) + a(s) y(s))$$

and

(8)
$$y(t) \ge H(r_1, \dots, r_{n-1}; \psi(s) + a(s)y(s))$$

for $t \ge \tau$. Consider the positive function sequence $\{z_k(t)\}_{k=1}^{\infty}$ which are defined on $[\tau, \infty)$ as follows:

$$z_1(t) = y(t)$$

 $z_{k+1}(t) = H(r_1, \dots, r_{n-1}; \psi(s) + a(s)z_k(s))$

if $k \ge 1$. By an induction argument, we see easily that for $t \ge \tau$ and k is a positive integer

$$0 \le z_{k+1}(t) \le z_k(t) \le y(t)$$
.

This and (7) imply that $\{z_k(t)\}_{k=1}^{\infty}$ is equicontinuous. Thus there exists a subsequence $\{z_{n_k}(t)\}_{k=1}^{\infty}$ of $\{z_k(t)\}_{k=1}^{\infty}$, which converges uniformly to x(t). Clearly $x(t) \leq y(t)$ for $t \geq \tau$, and by the Dominated Convergence Theorem we get for $t \geq \tau$

(9)
$$x(t) = H(r_1, \dots, r_{n-1}; \psi(s) + a(s) x(s)).$$

Differentiating (9) yields (3) for $t \ge \tau$. This completes our proof.

Remark. From (7), (8), (9) and the facts that $x(t) \le y(t)$ and $\psi(t) \le \varphi(t)$ on $[\tau, \infty)$, we see that $-x'(t) \le -y'(t)$ and x'(t) < 0 for $t \ge \tau$.

3. Main results

Theorem 1. Let the conditions (C_1) and (C_2) hold. Suppose that $g(t) \in G^0$ and that

(10)
$$L_n x(t) + (-1)^{n+1} a(t) x(t) = (-1)^n (t - g(t)) a(t)$$

has a positive bounded solution. Then (1) has a positive bounded solution.

Proof. Let $W_1(t)$ be a bounded positive solution of (10). Since $W_1(t) > 0$, $W_1'(t) \le 0$, $W_1''(t) \ge 0$, we know that $W_1(\infty) = \lim_{t \to \infty} W_1(t)$ and $W_1'(\infty) = \lim_{t \to \infty} W_1'(t)$ both exist. Also, $W_1'(\infty) = 0$ for otherwise $W_1(\infty)$ and $W_1'(\infty)$ cannot both exist. Now, we find $t_0 \ge \tau$ such that $|W_1'(t)| \le 1$ for $t \ge g(t_0)$.

Let $t_b > t_0$ and let $\lambda(t)$ and $\mu(t)$ be continuous nonnegative functions on $[t_0, \infty)$ such that $\lambda(t) + \mu(t) = 1$ for $t \ge t_0$ and $\lambda(t) = 1$, $\mu(t) = 0$ if $t \ge t_b$ and such that $\lambda(t) > 0$, $\mu(t) > 0$ if $t_0 \le t \le t_b$. Since $W_1'(t) \le 0$, $W_1(t)$ is nonincreasing. Hence $W_1(g(t)) \ge W_1(t)$. If $t \ge t_0$ then

 $W_{1}(g(t)) - W_{1}(t) = |W_{1}(g(t)) - W_{1}(t)| = |W_{1}(\theta)(t - g(t))| \le t - g(t)$ for some $\theta \in (g(t), t)$. Thus by Lemma 2, there is a bounded positive solution $W_{2}(t)$ on $[t_{0}, \infty)$ of

$$L_n W_2(t) + (-1)^{n+1} a(t) W_2(t)$$

$$= (-1)^{n} \mu(t) (t - g(t)) a(t) + (-1)^{n} \lambda(t) a(t) [W_{1}(g(t)) - W_{1}(t)]$$

with $0 \le W_2(t) \le W_1(t)$ and $-W_2(t) \le -W_1(t)$ for $t \ge t_0$. Extend $W_2(t)$ to $[g(t_0), \infty)$ by requiring $W_2(t) = W_2(t_0)$ if $g(t_0) \le t \le t_0$. Integrating $-W_2(t) \le -W_1(t)$ from g(t) to t, we have

$$\mathbf{W_{2}}\left(g\left(t\right)\right) - \mathbf{W_{2}}\left(t\right) \leq \mathbf{W_{1}}\left(g\left(t\right)\right) - \mathbf{W_{1}}\left(t\right).$$

Hence Lemma 2 implies that there exists a bounded positive solution $W_3(t)$ on $[t_0, \infty)$ of

$$L_n W_3(t) + (-1)^{n+1} a(t) W_3(t)$$

$$=(-1)^{n} \mu(t) (t-g(t)) a(t) + (-1)^{n} \lambda(t) a(t) [W_{2}(g(t)) - W_{2}(t)]$$

with $0 \le W_3(t) \le W_2(t)$ and $-W_3'(t) \le -W_2'(t)$ on $[t_0, \infty)$. Extend $W_3(t)$ to $[g(t_0), \infty)$ by requiring $W_3(t) = W_3(t_0)$ if $g(t_0) \le t \le t_0$. Continuing this way, we have a sequence $\{W_k(t)\}_{k=1}^\infty$ of positive nonincreasing functions such that

(II)
$$0 \le W_{k+1}(t) \le W_k(t) \le W_1(t)$$

$$-W'_{k+1}(t) \le -W'_{k}(t) \le -W'_{1}(t)$$

and

(13)
$$L_{n} W_{k+1}(t) + (-1)^{n+1} \alpha(t) W_{k+1}(t)$$

$$= (-1)^{n} \mu(t) (t - g(t)) \alpha(t) + (-1)^{n} \lambda(t) \alpha(t) [W_{k}(g(t)) - W_{k}(t)]$$

for $t \geq t_0$, $k \geq 1$. By (11), $\{W_k(t)\}_{k=1}^{\infty}$ converges pointwise, and (12) says that the function sequence is equicontinuous, so $\{W_k(t)\}_{k=1}^{\infty}$ has a locally uniform limit, say y(t). Now, (13) says that $\{L_n W_k(t)\}_{k=1}^{\infty}$ converges locally uniformly, so $L_n y(t)$ exists on $[t_0, \infty)$ and $L_n W_k(t) \to L_n y(t)$ locally uniformly and

(14)
$$L_{n} y(t) + (-1)^{n+1} a(t) y(t)$$

$$= (-1)^{n} \mu(t) (t - g(t)) a(t) + (-1)^{n} \lambda(t) a(t) [y(g(t)) - y(t)],$$

if $t \ge t_0$. For $t \ge t_b$, we have $\lambda(t) = 1$, $\mu(t) = 0$. Hence (14) gives (1) for $t \ge t_b$, so y(t) is a solution of (1). Clearly y(t) is bounded. Next, we shall prove that y(t) is positive. Clearly y(t) is nonnegative and nonincreasing, so if $T \ge t_0$ and y(T) = 0 then y(t) = 0 for $t \ge T$. Suppose $t_0 \le T < t_b$ and y(T) = 0. Now, y(t) = 0 for $t \ge T$, so $L_n y(T) = 0$ and (14) is violated since $\mu(T)(T-g(T))a(T) > 0$. Suppose y(t) > 0 on $[t_0, t_b), y(t)$ has a zero and T is the first such zero, i.e., $T \ge t_b$, y(t) > 0 on $[t_0, T)$ and y(T) = 0. Now, $L_n y(t) = 0$ and since g(T) < T, a(T) y(g(T)) > 0; contradicting (1). Thus y(t) > 0 for $t \ge t_0$. Hence the proof is complete.

Remark. From the first inequality of (12), $-\mathbf{W}_{k+1}^{'}(t) \leq -\mathbf{W}_{k}^{'}(t)$ for $k \geq 1$ we have

$$-\int_{g(t)}^{t} W'_{k+1}(s) ds \le -\int_{g(t)}^{t} W'_{k}(s) ds \quad \text{for} \quad k \ge 1,$$

that is

$$\mathbf{W}_{k+1}\left(g\left(t\right)\right) - \mathbf{W}_{k+1}\left(t\right) \leq \mathbf{W}_{k}\left(g\left(t\right)\right) - \mathbf{W}_{k}\left(t\right) \ \ \text{for} \ \ k \geq \mathbf{I}.$$

THEOREM 2. Let g(t), h(t) be in G^0 and $g(t) \le h(t)$ for $t \ge \tau$. Suppose that there exists a positive bounded solution of (1). If the conditions (C_1) and (C_2) hold, then there is a bounded positive solution of

$$L_{n} W(t) + (-1)^{n+1} a(t) W(h(t)) = 0.$$

Proof. Let y(t) be a bounded positive solution of (1). It follows from Lemma 1 that there exists a $t_0 \ge \tau$ such that for $t \ge t_0$ and $k = 1, 2, \dots, n$

$$u_k(t) \ge 0$$
 if k is odd $u_k(t) \le 0$ if k is even

and

$$\lim_{t\to\infty}u_k(t)=0$$

where

$$u_{1}(t) = y(t), u_{2}(t) = r_{1}(t) u_{1}'(t), \dots, u_{n}(t) = r_{n-1}(t) u_{n-1}'(t).$$

Let $t_b > t_0$ be such that $g(t_b) \ge t_0$. Define $\tilde{y}(t)$ by

$$\tilde{y}(t) = y(t_b)$$
 if $t \le t_b$

$$\tilde{y}(t) = y(t)$$
 if $t > t_b$.

Let $x(t) = y(t) - \tilde{y}(t)$, then x(t) > 0 on $[g(t_b), t_b)$ and x(t) = 0 on $[t_b, \infty)$. Since, y(t) is a solution of (1).

$$L_{n} \tilde{y}(t) + (-1)^{n+1} a(t) \tilde{y}(g(t)) = (-1)^{n} a(t) x(g(t))$$

for $t \ge t_0$. Thus for $t \ge t_b$

(16)
$$\tilde{y}(t) = H(r_1, \dots, r_{n-1}; a(s)[\tilde{y}(g(s)) + x(g(s))]).$$

Since $\tilde{y}(t)$ is nonincreasing, $\tilde{y}(g(t)) \geq \tilde{y}(h(t))$ for $t \geq t_b$. Hence (16) implies for $t \geq t_b$

(17)
$$\tilde{y}(t) \ge H(r_1, \dots, r_{n-1}; a(s)[\tilde{y}(h(s)) + x(g(s))]).$$

As in the proof of Theorem 1 we have a bounded nonnegative solution W(t) of

(18)
$$W(t) = H(r_1, \dots, r_{n-1}; a(s) [W(h(s)) + x(g(s))]),$$

or

(19)
$$L_n W(t) + (-1)^{n+1} a(t) W(h(t)) = (-1)^n a(t) x(g(t)),$$

for $t \ge t_b$. The positivity of x(t) on $[g(t_b), t_b)$ and the fact that $h(t) \in G^0$, ensure as before that W(t) has no zeros.

If $T > t_b$ and $g(T) > t_b$, then (19) yields (15) for $t \ge T$. Hence our proof is complete.

REFERENCES

- [1] D. L. LOVELADY Positive bounded solutions for a class of linear delay differential equations (« Hiroshima Math. Journ »).
- [2] D. L. LOVELADY (1975) On the oscillatory behavior of bounded solutions of higher order differential equations, « J. Differential Equations », 19, 167-175.