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Equazioni differenziali ordinarie. — On #he posz;z‘z've bounded
Solutions of linear delay higher order differential equations . Nota
di Lu-San CueNn e CHEH-Cuin YEH, presentata ™ dal Socio
G. SANSONE.

RI1ASSUNTO. — Si danno condizioni sufficienti perché I’equazione
Lyx@) + (—1)"la(f)z(g(@)) =0
abbia soluzione positiva limitata,

1. INTRODUCTION

In this paper we consider the #z-th order ( > 1) linear delay differential
equation k

() Lyx(@) +(—n"a@x(g@®) =o0,

where the differential operator L, is defined by

L0x<t> = X(l‘) ’ Lix<t> =74 (t> (Li—lx(t», ’ 1=1,2," 7,
() =1
and the functions »; () (4 =1,---,#—1) are positive at least on [t, c0),

v > 0. Let # be an integer, » > 1, a () be a positive continuous function on
[7, 00) and let G be the set to which g (#) belongs if and only if ¢ (¥) is a non-
negative, nondecreasing, unbounded continuous function on [t , ©0) such that
g () <t whenever # = . Let G° be the subset of G to which g (#) belongs if
and only if ¢ (#) is in G and g (¢) < ¢ whenever ¢ > 7.

We give here some conditions to ensure that (1) has a positive bounded
solutions. The technique used is an adaptation of that of Lovelady [1] which
concerns the particular case 7, () =7, (#) =-+-=7,, (¢) = 1. In what follows
the term *‘ solution ” is always used only for such solutions x (¢) of (1) which
are defined for all large 2

L4

2. LEMMAS

To obtain our results we need the following two lemmas. The first of
them is due to Lovelady [2], and the second is an improved version of another
Lovelady’s Lemma [1]. : '

(*) This research was supported by the National Science Council.
(**) Nella seduta del 13 novembre 1976.
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LEMMA 1. LZLet y (¢) be a positive bounded solution of
@) Liy@® +(—0D"™a@y@®=(—1"9¢®,

where @ (£) s a positive continuous function on [v,00). Let

(N /%gtj:oo, =1, ""yn—1)
and .
(©) Hlr, 752 ()]
- / 71 Zﬁ) / 7a 1(52> B f n—1 ésn—ﬂ / @ () dsdsyy oo dsy = oo
51 : Sn—2 8n—1
If b=1,2,",n, then u,(t) is monotone, limu; (t) = 0 and there exisis
ty > 7 such that for t > t, b
1, (£) >0 if E is odd,
up (8) <o if £ is even,
where ‘

w () =y (), up () =ri @) (1), sy () = 7y (@) g (2) -

LeMMA ‘2. Suppose that the conditions (C,) and (Cy) hold. Let § (£) be a posi-
tive continuous function on [t , c0). Suppose also that & (£) < ¢ (¢) for t > r,
and that there exists a positive bounded solution y (t) of (2). Then there
exists a positive bounded solution x (t) of

(3) L,x(®) 4 (— 0™ a@x@® = (—1)m¢ @)

on [t,00) such that

r(BO<y@®
for t > .

Proof. We define the following functions on [t , co)

2 <t) =Yy <f> , 4y (8) =7 (D) ”1 @, %n O =71 (O %Iz—l ®.

Then, by Lemma 1, we obtain for £=1,2,-+-, %
@ v lim 2, (#) = 0.
t—>o0

Integrating (2) #— 1 times and using (4) we obtain

s) — () = IR L IOR IO OY
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and
(6) y<t>=ul<t):H(”lr"'vrnﬂ;q)(s)+d<s)y(s)>
for £ = 7. It follows from (5), (6) and ¢ (s) = ¢ (s) that

I

r ()

Q —Y O = —=H a4 +a () ()

and

©) y@OZH, a4 () +a()y ()

for # > <. Consider the positive function sequence {z; (¢)};—; which are defined
on [t,o0) as follows:

5 (@) =y@®
G (O =H @y, 703 V() + a(5) 2. (5))

if £#> 1. By an induction argument, we see easily that for #> v and £ isa
positive integer

0=z () S50 <y®.

This and (7) imply that {z (/)}~; is equicontinuous. Thus there exists a
subsequence {z,, ()}iz1 of {2 (©) }x=1, which converges uniformly to x (¢).
Clearly x () <y (¢) for £ > 7, and by the Dominated Convergence Theorem
we get for ¢t >

) 2@ =H@r, 7540 Fal)x ().

Differentiating (9) yields (3) for # > 1. This completes our proof.

Remark. From (7), (8), (9) and the facts that x () <y (¥) and ¢ (¥) <
< @) on [r, c0), we see that —a' () <— 3 (¥) and 2" (¥) <o for : > 7.

3. MAIN RESULTS

THEOREM 1. .Let the conditions (Cy) and (C,) hold.
Suppose that g (t)e G° and that

(10) Lyx (@) +(—0D"™Ma@x @) =(—)"(t—g@)a(®

has a positive bounded solution. Then (1) has a positive bounded solution.

Proof. Let W, (¢) be a bounded positive solution of (10). Since W, (¢) > o,

Wi (#) <o, W, (f) =0, we know that W, (c0) = lim W, (¢) and W; (c0) =
{00

= lim W; (¢) both exist. Also, W, (00) = o for otherwise W, (c0) and W, (00)

t->00 .

cannot both exist. Now, we find #; = ¢ such that iWi @) | <1 for 2 = g (%)
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Let #, > 7, and let A (¥) and @ (#) be continuous nonnegative functions on
[to, 00) such that A(?) +p () =1 for t =ty and A(H) =1 ,p(¥) =0 if £ = ¢,
and such that A (5) >o0,u () >o0if 4, <? <. Since W, <o, W, ()
is nonincreasing. Hence W, (g (¥)) > W, (). If #>¢, then

W, (g () — W, () = | Wy (g () — W, (&) | = | Wi (6) —g (&) | <2 —g (O
for some 0€ (g (¢),#). Thus by Lemma 2, there is a bounded positive solution
W, (®) on [, o) of

LaWe () + (—1)"a (@)W, (9)

=p@OU—g@a@®+ (D" @O a@® [Wi(g (@) — W, ()]

with 0 < W, () < W, () and — W, (¢) <— W, (¢) for # >#,. Extend W, (¥)
to [g(#,),00) by requiring W, () = W, (%) if g(¢) <2z <¢,. Integrating
— W, () <— W, () from g (#) to ¢, we have

W (g (@) — W, () < W, (g(®)— W, (®.

 Hence Lemma 2 implies that there exists a bounded positive solution Wi (¢)
on [£,, o0) of

LaWs (@) + (— "™ a () Ws ()
=(—D"u@@t—g@a@® +(—D)"rBa@®[W,(g®)— W ()]

with 0 < W;(0) < W, () and — W, (®) <— W, () on [f,00). Extend
W, (@) to [g(2,), o) by requiring W, () = W3 (7,) if g(¢) <¢<¢,. Con-
tinuing this way, we have a sequence {W; (9}~ of positive nonincreasing
functions such that

- (D 0 = Wiy () S W, () < WL ()
(12) —Win () S— Wi () — Wi (0
and
(13) L, Wi (&) + (— 1) a(t) Wiy (8

= (D O g () @) + (D AB a () Wi g (0) — Wi ()]

fot £ >1¢,, £ >=>1. By (11), {W; (#)}iZ, converges pointwise, and (12) says
that the -function sequence is equicontinuous, so {W; (#)}iZ; has a locally
uniform limit, say y (#). Now, (13) says that {L, W} (#)};2; converges locally
uniformly, so L,y (#) exists on [#,, c0) and L, W; (¥) > L, v (¢) locally uni-
formly and

(14) | L,y () + (— ¥ a () @)
B g (N a®) - (— DA Ba® y(g©) —y O],
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if £ >¢, Fort >+, we have N (¥) = 1,u(¥) = 0. Hence (14) gives (1) for
t > t, so y(¢) is a solution of (1). Clearly y (¢) is bounded. Next, we shall
prove that y (¢) is positive. Clearly y (¢) is nonnegative and nonincreasing,
so if T > ¢, and ¥ (T) = o then y (¥) = o for # > T. Suppose 7, <T < ¢ and
y(I)=o0. Now, y(#)=o0 for ¢t =T, so L,y (T) =0 and (14) is violated
since uw (1) (T—g(T)a(T) >o0. Suppose ¥ () >0 on [#,4),y () has a
zero and T is the first such zero,ie., T >,y (#) >oon [¢,T) and y (T) = o.
Now, L,y (#) = 0 and since g (T) << T, a (T) ¥ (g (T)) > o; contradicting (1).
Thus y (#) > o for t = ¢,. Hence the proof is complete.

Remark. From the first inequality of (12), — Wy, ) <—W (&) for
£ >1 we have

~fw,;+1<s>ds g—fw,;@ds for £>1,
g(t) g(t)
that is

Wi (8 (0) — Wi ) S Wi (g ) — W, (&) for £2=1.
THEOREM 2. Let g (£), 4 (£) be in G® and g () <k (¢) for t > 1. Suppose

that there exists a positive bounded solution of (1). If the conditions (Cy) and
(C,) hold, then there is a bounded positive solution of

(13) LW@ +(—=D™"a()W k(@) =o.

Proof. Let y (#) be a bounded positive solution of (1). It follows from
Lemma 1 that there exists a #, > 7 such that for £ >¢,and £ =1,2,---, %

() >0 if £ is odd

u, () <o if £ 1is even
and

Hm 2 (£) = o

{00
where

O =y, O =r @), w4y () =g (&) 2 () -
Let 4, > #, be such that g (4) =, Define ¥ () by
&) =y@) if t<4
FEO =y if t>4.

Let x () = y () — 7 (¢), then x () > 0 on [g (%), %) and x (z) =0 on [#, oo).
Since, ¥ (¢) is a solution of (I1). :

L@+ (—a@®)i@@®) =(—nD"a@)x(g®)
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for t > ¢;. Thus for ¢ =
(16) @O =H(@, 758 [V (g6) +x(g @)D

Since ¥ (#) is nonincreasing, ¥ (¢ (#)) = ¥ (£ (£)) for ¢ > ¢,. Hence (16) implies
for ¢ Z 7,

(17) V@O =H s a() [V ) +x (g 6D

As in the proof of Theorem 1 we have a bounded nonnegative solution W (#) of

(18) W@ =H@, 750 () [WEES) +2 (g6,
(19) LaW@ +(—10)"a@WE@) =(—n"a®x(g@®),

for ¢t = ¢,. The positivity of x () on [g (%), ) and the fact that % (¥)e G,
ensure as before that W (#) has no zeros.

If T >4 and g(T) >4, then (19) yields (15) for # >T. Hence our
proof is complete.
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