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Analisi funzionale. — Fixed point theorems for quasi-nonexpansive
mappings. Nota di Kanmava L. SinGh, presentata ® dal Socio
B. SEGRE.

RIASSUNTO. — Vengono stabiliti vari teoremi del punto fisso per applicazioni quasi
non espansive in spazi di Banach. Si dimostra inoltre che in uno spazio di Hilbert ogni appli-
cazione quasi non espansiva risulta ragionevolmente errabonda ed asintoticamente regolare
in sensi qui definiti. Si ottiene infine un teorema di convergenza debole per le iterate di una
applicazione quasi non espansiva.

INTRODUCTION

Recently many authors (Kirk, Edelstein, Gobel, Browder, Singh, etc.)
have proved fixed point theorems for nonexpansive operators mapping a
closed bounded and convex subset of a Banach space into itself. The main
purpose of this paper is to establish the existence of fixed points for operators
mapping a closed bounded convex subset of a Banach space into itself
which instead of being nonexpansive are quasi-nonexpansive. The concept
of quasi-nonexpansive mapping was first communicated by the author to
R. K. Yadav (‘‘ Banaras Math. Journal”, 1969). Further this kind of
mapping was studied by Soardi, Reich, the present author and others.

DEFINITION 1.1. Let C be a closed, bounded and convex subset of
a Banach space X. A mapping T:C —C is said to be wonexpansive if

T — Tyl <llx—u] for all x,y in C.
DEFINITION 1.2. A mapping T : C — C is said to be quasi-nonexpansive if

ITr—Tyll S (lx—Txf| +lx—y[ +Ily —TylD/3 foralx,yinC.

The following example shows that there are quasi-nonexpansive mapp-
ings which are not necessarily nonexpansive.

EXAMPLE 1.1. Let X = [0, 1] and let Tx =x/3 for o <x <1 and
T (1y =.1/6. Then T is quasi-nonexpansive but it is not nonexpansive.

THEOREM 1.1. Let C be a weakly compact convex subset of a normed
linear space X. Let T :C —C be a quasi-nonexpansive mapping. Further-
morve assume T is continuous, then the set {{| x — Tx||[x in C} has a smallest
nwumber.

Proof. Let » >o0. Define the set C, by C, = {yin Cf||y — Ty || <}
Let D = {r in [o, o0)/C, 5~ @}. Since C is bounded, D 7 &. It is enough
to show that D has a smallest element or equivalently NC, £ @. For each

(*) Nella seduta del 13 novembre 1976,
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7 in D, let C;, be the closed convex hull of T (C,). Since for any »,s in
D with » <s5,C, < C,, the family F = {C.,/r in D} has a finite intersection
property. Since each C,, is closed and convex, it is weakly closed. Therefore
by the weak compactness of C we conclude that F has nonempty intersection.
Thus it is enough to show that C,, = C, for each » in D. Let# in D, y
in C;,. Then there exists o, 0, -+, %, in [0,1] and 3,,%,, -+, ¥, in C
such that ¥y = Zo; T (¥y), 2; =0, X«; = 1. Thus

lly —Tyll =1 2T () — Tyl < Bai | T () — Tyl
=2 {IT (o) —xill +lly —yill+ 1y —Tri}3
Iy =Tyl 2T (v —xill + 1y —»: 133 + Zslly — Ty I3
<2 {IT () —yill +lly —2.13/3 +lly—Tyllf3.
Therefore [since y = Zo; T (y;) and y,€C,]:

or

2|y —Tylll3 £ 2| T (v)) —2:lll3 + Zes | T (v2) — 233
<2/3Z; || T (y) —yill < 2/3 Zay7r = 2[37.
Thus ||y —Ty|| <7; and this implies that C;, €C,.

THEOREM 1.2. Let X be a normed linear space. Let C be a weakly compact
convex subset of X and T :C —C be continuous quasi-nonexpansive. If T
does not have a fixed point, then there exists a T-invariant closed convex subset
of X such that 8 (H) > o0 and ||x —Tx| = 8 (H) for all x in H, where 3 (H)
is the diameter of H. Moreover if for any closed convex T-invariant subset H
of X with 8 (H) > o there exists an x in H suck that ||x —y|| <3H), ¥
in B, then T has a unique fixed point.

Proof. By Zorn’s lemma there exists a nonempty T-invariant minimal

closed convex subset D of C. By Theorem 1.1, there exists # in D such that
llx—Tx|| = inf {| y — Ty {lly in D} .

Let oy =||x—Tx|. By hypothesis oy > 0. Using the notations of

Theorem 1.1 we have Gy, = C“o’

T (Cio) S T(Co) € @ T (Ca) = Cuey»

where ¢o designate the convex closure.
By minimality of D we infer that D = C,,, and therefore C, = D. By
the choice of «y, ||y — Tyl = o, for all ¥ in D. Now for any x in G, ,

[ Te—T2xll < 1f3 {loe —Tx| +lx—Txll +|Tx —Tox[}}
[T —T2xf| <o —Txll < 0.

or

Thus we conclude that T (G, = C,,, hence 3 (TG, < 8(Cy) = . There-
fore 83 D) = a,. Hence ||y —Ty| = 3 (D) for all ¥ in D.
The proof of second half follows from the proof of first part.
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THEOREM 1.3. Let C be a weakly compact convex subsct of a Bamach
space X. Let T be a continuous quasi-nonexpansive self map of C. Suppose
that for any closed comvex subset D of C with T (D) @ D and 3 (D)> o

inf {[|y —Tyllly in D} <3 (D).
Then T has a wunigue.fixed point.
Proof. By Zorn’s lemma, there exists a minimal nonempty weakly
compact convex H of C such that T(H)c H. Let x in H,» = | x —Tx|.

Consider W = {y in H/||y —Ty| <7}.
Since x in H, W 3£ g. Since for any z in W

1T2z-—Tell < 1/3{lz—Te|l -+llz—Tz|| + I T*2 — Tz |}
or
T2z —Tz|| <llz—Tzl| <7.

Thus we conclude that T (W)c W. Let V be the closure of convex hull
of T(W). We claim that Vo W. Let # in V and ¢ > o, then there exist

n
UV, U, o, v, in Wand o ,ay, -+, a, in [0,1] such that Eoc,-:l and
=1
| n |
‘u—-z a; To,| <e.
Thus st u
n I 7 : n
“”"‘T””Si”_E“iTUH“I‘ ZaiTvi——Tu'<€+Zoc,i[|Tv,-——~Tu||-
; o1 [ 3 ‘ =

An argument similar to the proof of Theorem 1.1 shows that ||z — Tu ] <
<< 2z 47 Since ¢ was arbitrary chosen, || #— Tu{ <, i.e. 2 in W. Thus
Ve W. So :
TV ceTW)= V.

By minimality of I,V = H. So W = H. Since x is arbitrary chosen
it follows from W = H that ||z— Tz| = » for all # in H.

Construct D (take H = D) as above. Suppose & (D) > o, then by hypo-
thesis there exists x in D such that » = ||x — Tx || < 3 (D).

Construct V as above. Then V=W =D and » ={ y—Ty]| for each
v in D. Let p in D. Then

IT2p—Topll <llp—Toll =7.

Thus T (D)< D, therefore 8 (T (D)) <3 (D) =7. Thus 3 (D) = § (V) =
= 3 (T (W)) <r» < 8 (D), a contradiction.

DEFINITION 2.1. Let H be a Hilbert space. Let C bé a closed, convex
subset of H. A mapping T :C —C is said to be a reasonable wanderer in
C if .starting at any x, in C, its successive steps x, = T*xy(n =1,2,3, ")
are such that the sum of squares of their lengths is finite, i.e.

m .
Dl — x| <00
n=0
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THEOREM 2.1. Let H be a Hilbert space. Let C be a closed convex
subset of H. Let T :C —C be a quasi-nonexpansive mapping with non:mpty
Soxed point set ¥. If Ty =N + (1 —NT for any given » with o <k < 1,
then Ty is a reasonable wanderer from C into C with the same fixed poinits as T.

Proof. 1t is obvious that T and T, have the same fixed points.

It

remains to show that T is a reasonable wanderer. For any x in C, set

x, =Tkx and let y be a fixed point of T and hence of T,. Then
O =y =M, (0 —=NTr,—y =Tax,—y =r(x,—) +
+ @ =N (Tx—y).
On the other hand, for any constant B,
() B Gr—Tx) = B (1a—2) — B (Tx,— ) -
Let us first observe that
(3) | Tx,—y i =I1Tx, —Ty || <
<{l#—Txll +llxs—y Il + 1y —Tyl}/3
= {ll 2, — Tx | +ll2,—y1}3 .

Now

4) 2y — Tx, [ Sl — il +lly — Tl -

Thus substitution from (4) into (3) gives

() Ny — 3l <N x— il

Since from (1) we have

(©) [ #nr—p | =Nz, —p |* + (0 =2 T, — ¥ | +

422 —NTx, —y,x,—»),
and from (2) we get

™) B 2 — Tty [ = B2 2, — IR +
+ B8 Tx, —yP— 28 (Tx—y, 2, — ) .
Adding corresponding sides of (6) and (7) we obtain
®) g — 2 1P + B2l 2, + T, |2
= B [l — (1 {1 — 0 )] T, —y P+
+2 0 —N—p}(Txr,—y,x,—y).
Using (5) we, can write (8) as A
©) g — 2 IF + B2l 20— T, P <

PR+ = 4+ r—y P+ 20— =B} Tra—y, %, —) .

23 — RENDICONTI 1976, vol. LXI, fasc. 5,
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If we assume that B is such that f2 <A (1 —2), then using the
Cauchy-Schwarz inequality and (5), we obtain from (9).

(10) [ Zwsr — 2 I+ B2l 2 — T, P <
R+t r—2r M+ E o —2P—2@|r,—yP=|x,—y|.

Letting f2 = % (1 — ) > o and summing up from % = 0 to » = N, we obtain
N N
() A(C—%n Z{)H xy— T, [P < ZO % — 5 IF—ll %ps — > IF}
n= n=
==y P—lenn—y I <llxo—x 7.

oo
Hence Z | 2, — Tx, | <<oo. Since xpy—zx, =rx, + (0 —2Tx,—x, =

n=0

= (1 —2) (Tx, — x,), from (11) we obtain

A (1 ~x>n§) (1 — N2 || Xy — 2, [P < 2o — |2
or

2‘6 | Xpi — 2l < (T —M)/M L2 — 5 |-
n=
Therefore T, is a reasonable wanderer in C.

DEFINITION 2.2. Let H be a Hilbert space and C be a closed convex
subset of H. A mapping T:C —C is called asymptotically regular at x if
and only if |T*x — T x|| >0 as # — oco.

COROLLARY 2.1. If T is quasi-nonexpansive and the set ¥ of fixed points
of T in C is nonempty and if T =AN + 0 —NT for a given n with
0 <\ < 1, then Ty has the same fixed points as T, and Ty is asymptotically
regulay.

Remark 2.1. A Theorem similar to Theorem 2.1 for nonexpansive
mappings is given by Browder and Petryshyn (3); unfortunately, the Theo-
rem is not stated correctly there. The mapping T, should be defined by
Th=M+ 0 —NT instead of T) =1+ (1—N)T.

THEOREM 3.1. Let X be a Banack space and x, be any point of X.
Let T be a mappmg of X into ttself satisfying
(1) T —Ty | < 1/3{lx—Txl| +llx—yl+Illy— Ty |}

x,y in X. Suppose the sequence {x,}, where x,,, = (x, + Tx,)|2 converges
to u. Then w is a fixed point of T.

Proof. Define the mapp~ing F as
Fx = (x +Tx)/2.
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Then F maps X into itself and the sequence {x,} becomes the sequence
of iterates of x, by F. Now if x,y in X, then

| Fx—Fyll=1/2llx—y +Tx — Tyl < 12 {lx —» || + | Te— Ty [}
<tz {lx—yl + 130 x—Txll +lx—yl + Iy — Ty}
=13 2llx—»l -+ 1/2 (lx—Tx| + |y — Ty D}
—132lx—yl 4+ llx—Fx] +lly—Frl}.

Hence

(| %2 — Fae || = || Fx, — Fue || < 2| %y — 2|13 4 {} %, — B, | + |2 — Fae |}}/3
<z2llag—ulf3 + {2y — )l + | % — Zpaa | + 22— 2,0 |
Al 2e — X | + %1 — Fe |}/3

or

| Zpa — Faell < 3l 20 —nllf2 + | —2puall -

Since x, —1# as # — o0, thus we have | x,;,— Ful| —0 as # — oo
hence # == Fu. So u = Fu'= (u + Twu)[2, which implies 2 = Tu.

THEOREM 3.2. Let {f,} be a sequence of elements in a Banach space.
Let g, be the unique solution of the equation h—T (h) =f,, where T is a
mapping of X into itself such that

(1) [ Tr =Tyl < 13{lx—Txl| +lx—yll + 1y —Trl},

x,yin X. If lfull=0 as n— oo, then the sequence {g,} converges to the
solution of the equation k=T (k).

Proof. Using condition (1) we will show that {g,} is a Cauchy sequence.

Now
@ N Ten—Tgull < {lgn—Teull + g0 —gull +ll&n—Teull/3 .

Hence using (3) we can write (2) as

2l gn—gmli3 < 4 {l&n—"Teull + Il g0 — Tem}/3
or

1gn —&mll < 2 {lga—T&ll + I 8w — T I} <z (1Al + 1ful) -

It follows, therefore, that {g,} is a. Cauchy sequence in° X. Hence it
converges, say to g in X. Also

le —Tell <llg—gull +llgn—Tg,ll +1Tg,—Tgll
<lg—2: !l +1lgn—Teull + Nl ga—Teull + llg —gull +

+lg—Telh/3,
or ‘

le—Tell <2 {lg—gull +llgn—Teull}
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for arbitrary positive integer z. Hence taking the limit as % — oo we get
lg —Tgll —o, or g =Tg.

THEOREM 3.3. Let X be a uniformly convex Banack space. Let C be a
closed bounded convex subset of X. Let T:C—C be a quasi-nonexpansive map-
ping. If x in C and ¢ is the asymptotic center of {T"x[n=0,1,2,- .} then
r(o) =inf{|T"x—cllln=0,1,2,  } <inf{| T"x—yl|/n=0,1,2,---}
Sfor each fixed point y of T.

Proof. From y = Ty it follows that
) [Ty —y || = [ T x —Ty|
<{iTrx =T 2| + [T x—y |l +» —Ty}/3

= {|Trx —Trix | + | Trx —y[}/3.
Now

(2) [Trx =Tz || <[ TP —y [ +ly — T x|
Using (2) we can write (1) as
(3) [Ty —yl <[ T"x —x].

From (3) we conclude 7»,(») =|T*x —y|| and »(y)=inf {|T"x—y||/z
==0,1,2,-+-}. The conclusion of Theorem 3.3 now follows from (6) of (7).

Before we state and prove our next theorem we need the following
Lemmas:

LEMMA 4.1. (3, Proposition 1.4, pp. 32). Let X be a topological space
and C be a compact subset of it. Let g:X — R be a lower semiconti-
nuous function in X. Then there exists x, in C-such that g (x,) = inf g (x).

. zeC

LEMMA 4.2. (3, Proposition 2.5, pp. 53). Let X be a Banach space
and g a convex continuous real-valued function on X. Then g is weakly
lower semicontinuous.

LEMMA 4.3. Let H be a Hilbert space and C be convex subset of H.
Let 'T:C —C satisfy the following condition:

[Tx =Tyl <ellx—yl +6(lx—Txl| +ly—TxI)

for all x,v in C and a + 26 < 1. Suppose F, the fixed point set of T in
C, is nonempty; then ¥ is convex.

Proof. Let x,y be any two points of F, and z=1tx + (1 —2),
0 <t < 1. Since C is convex therefore z belongs to C. We claim that 2
belongs to F. Now

I Te—x = | Te—Tx || Salls—zx] + & x—Txl| + ] 2—Tz[)
=allz—x|| +ollze—Tz| <allz—x| +b(lz—=x|| +x—Tz[).
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Thus
[Tz—x[=(e+ o llz—xl/{le—> /(1 —Db) (1 —b) <||z—x|l.
Similarly
1Tz —yl| < llz—xl.
Now
g—x=tx+10—)y—x=—0—8)@&x—y),
and
g—y=tx+ (1 —fy—y=1t(x—y).
Thus
[x—yl=lx—Tz| + | Te—pl<llz—2[+lz—xl
SsO=nllx—yl +tlx—yli=llr—y].
Hence ||x —Tz|| | Tz —y||=||xr — Tz + Te—y|. If x —Tz = o, then
1 Tz—y|| =lx—yll <||lz—x|| =¢||x — ¥, whence # > 1, which is not

true. Similarly Tz —y = o0 implies 1—¢> 1, whence #<< 0, which is not
true. Since H is strictly convex, therefore there exists » > o such that
Tz—x =m (y—Ts), whence Tz = (1 —n)x + ny, where n = m[(1 + m).
We have Te—x = n (v —x) and so nl|ly —x | =||Tz—2x| <|z—x| =
= ¢||y¥ — x|, which gives » <¢. Using Tz—y = (1 — %) (x — »), a similar
argument gives # = ¢ Thus #=1¢ and so Te == (1 —8x +ty =2 ic 2z
belongs to F.

THEOREM 4.1. Let H be a Hilbert space and T a continuous asympiotically
regular mapping of H into itself satisfying the condition || Txr—Ty||< alx—y ]|+
+o(jx—Tx || +|ly—Tyl) for all x,y in H and a-+26<<1. Suppose that
the set F of fixed points of T is non-empty. Then, for each point x, in H, the
sequence {T"xo} converges weakly to a point of ¥, provided 1—T is demiclpsed.

Proof. Since by assumption F is non-empty, therefore it follows that
a ball B about some fixed point and containing x, is mapped into itself by
T; consequently B contains the sequence of iterates T"x, Thus without
loss of generality we can restrict ourselves to a mapping of a ball into
itself. By Lemma 4.3 it follows that F is convex, and by the continuity
of T we get the closedness of . Thus F, being closed, bounded and convex,
is weakly compact.

Let us define in ¥ the following mapping

g:F — R+, (R* = nonnegative real numbers)

(D) g (y) =inf [Tt xy—y || = Im | T* xo—y .

Nn—> 00

Since the sequence {||T"x,— y ||} is non-increasing, therefore in (1) we
have lim = inf. The mapping £ so defined is continuous. Indeed,

(2) g@ =Im||T"x—z[| <Lm[T"x— y|| + 1y — 2| =

=g +ly—=I.
From (2) we obtain

lg(»)—g@| =lly—=].
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We claim that g is lower semicontinuous. In virtue of Lemma 4.2 it
is enough to show that g is convex. Indeed,

gy + (0 —a)s) =lim|| T xy— (ay + (1 —a)2) | =
=lim|| (1 —a&) T*xy + aT"xy—ay — (1 —a) z||

<ealim|[T'xy— || + (@ —a) lim|| T xg—2|=ag () + (1 —a) g (2) .

Thus g is lower semicontinuous. Applying LLemma 4.1 we conclude that there
exists a point z in ¥ such that

gw)=d=infg(y).
yeF

Now we claim that # is unique. Suppose not, i.e. there exists an other
point v in F such that g (v) == d. By the convexity of g it follows that
glaw +(1 —a)v)=4d forallo <a <1. So ||x,—u||—4d,]||x,—v| >4
and ||x,— (azz + (1 —a)v|| —d. Since every Hilbert space is uniformly
convex, thus by the uniform convexity of H we infer that || (x, — 2)—
—(x,—v)l| > 0,le u =0

Finally, it remains to show that {T"x,} converges weakly to «. To
this effect we prove that given any subsequence of {T"=x,}, it contains a
further subsequence which converges to x. In fact given any subsequence
of {T"x,}, it follows that it contains a further subsequence {T"¥x;} which
converges weakly to some point . We claim that # = p. Indeed, we have

T g — st = | Tt — [+ | p— 2] + 2 Re (T"P g — 2, p— 1),

Taking limit we obtain

g) =g+ p—ul

which is possible only if p = #, whence the Theorem.
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