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Geodesia. —  Discussion on the existence and uniqueness of the 
solution of Molodensky s problem in gravity space. Nota (*} di F er ­
nando S ansò , presentata dal Socio L. S o l a in i.

RIASSUNTO. -— In un recente lavoro l’Autore ha dato una nuova formulazione del pro­
blema di Molodensky nello spazio della gravità. Tale formulazione riduce il problema alla 
soluzione di una certa equazione funzionale non lineare.

In questo lavoro si applica il metodo di Newton per lo studio dell’esistenza e della uni­
cità della soluzione di tale equazione.

Introduction

In the recent work “ The boundary value problem of physical Geodesy 
in gravity space ” the Author has proved that Molodensky’s problem can 
be advantageously formulated in gravity space. More precisely, in that 
paper, the gravity potential uy for a non-rotating model of the earth, has 
first been considered as a function of the gravity vector g.  The function 
u (g)  is related to the adjoint potential <J/ (g) through the formula

g " ¥
+ = « (* ■ ) (Légendre transformation).

It has been possible to show that the adjoint potential must satisfy a 
certain elliptic non linear partial differential equation, with boundary con­
ditions of the third kind, the so called oblique derivative problem.

After some transformations this has been reduced to a Dirichlet problem 
for another non linear, but more manageable, partial differential equation: 
the new unknown in this equation is a function v whose physical meaning 
is that of a perturbation of the potential u (g) =  that is of the
potential of a homogeneous sphere of mass M.

In order to be physically acceptable, this solution v must fulfill a certain 
condition in the origin g  =  o: we will deal with this difficulty in a next 
note.

The purpose of this paper is to find clear and, possibly, wider conditions 
of existence and to study the problem of the uniqueness of the function v. 
This will be done by applying Newton’s method to the fundamental functional 
equation of which v must be the solution.

(*) Pervenuta all’Accademia il 25 settembre 1976.
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I. S um m a r y  of t h e  p r e c e d in g  r e su l t s

In the already mentioned work it has been proved that, under opportune 
conditions, the solution of Molodensky’s problem is equivalent to the solution 
of the following fundamental functional equation.

Suppose that u (a) and g  (a) are the values of the potential and of 
the vector of the purely gravitational field, given on the surface of the 
earth: a is the two dimensional parameter a =  (O , A).

7~~i ,

domain (containing the origin y =  o) with boundary T

L e t u s  p u t

0 . 0 p. =

0 . 2 ) Y =

0 . 3 ) r  =

( m ) D  =

(1 .5 ) P Y =

(1 .6 ) V  =

(1 .7 ) v  (a ) =
u (a)
T W

and let us also consider the bilinear operator

(i»8)

+  2

Y -,

B (u , v) =  j-— u&v —• J  Av dy +
0

Y ( Y

J UdYT r ( l - A p Y) | v d Y-  
0 0 

Y Y

( i - | p Y) j u dr ( I - A p , ) / v dY]  +
0 0

Y

+  4Y [ l>  ( i  -  A  Pv) U Tr ( i  -  A  PY)  j  VdY
0

■Tri I
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We will call

(1,9) F [v] =  B (v , v) .

The Dirichlet problem for the fundamental equation can thus be written

( Av =  [xF [v] y e  D
(M o) j

( v =  z> (a) y e T.

If a solution of (1,1) exists and satisfies the condition

(1.11) Vv(o) =  0 ,

we can construct the adjoint potential <]; (g), through

(1 .12) 4  (*) =  — 2 (M* +  » («)) +  J  [ v ( y ) - v ( ó ) ] Y-*dy,
0

from (1,12) the figure of the earth can be derived by means of

(M 3) *■(«) =  |*0) •

The equation (1,10) has been studied in the Banach Space C2+x, where 
the norm is defined by

I v ||2+x =  max | ^ |  +  max | a* v | +  max | dile v | -f max Hx (dik v)
yeD i,yeD i,k»yeT> i,k

(1.14) < H y (dik v) =  sup dik v (y) — dik V (y')

3
W i

dik =

I r— y'lx
a2

dYidYk '

A first result on the existence of the solution of equation (1,10) has 
been obtained, by proving the majorization

( 1 , 1 5 )  Il F  M  IK I k  II2 + x

where h is a constant depending only on the shape of D and on X, and by 
using Schauder’s estimate

Av = f  y e  D

v =  v (a) y G T
(1,16) = H k  ll2+ x < c ( I I v ( * )  I K + x + 11/ IK ) •
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The result is summarized in the

T h e o r e m  I. Let us call

A (R) = sup
ll“ ll2+X-R
ii»ii2+x< r

M  -  F  [v] llx 
I U —  V ||a+x

it is easy to see that A (R) =  O (R), 

a) I f  the condition 
(1,17) 4 V-hâ II v (a) |U  <  I

is satisfied, then the sequence {vn}

(A v n+1 =  \j.F[vn] 

( |r =  v (a)

I Av0 =  o

( *0 |r =  v (a)

is bounded in  C2+x, that is

C1*16) l b» l l <?*
b) I f  y moreover

(1.17) \ L & ( r ) c < i

then the sequence {v i s  convergent in C2+x to the solution v of (1,10).

In order to apply Newton’s method to equation (1,10) it is preferable 
to transform it into a fixed point equation by introducing the Green’s 
operator G, which is the inverse of the Laplace operator with homogeneous 
boundary conditions.

Calling

(1.18) Q 0 )  -  GF [*]

and

(1,13) v0 ; Avq =  o in D , v0.=  v (a) on T

it is easy to prove the equivalence between (1,10) and the equation

(1.20) v =  v0 +  [lQ(v)

Since from (1,16) we have

( 1 . 2 1 )  II v0 I L x  <  C \\v ( a )  II2+X

(1.22) : Il Q (v) ||2+x < c h \ \ v  Ü2+X

we recognize that (1,20) can be considered as the fixed point equation for 
the operator S (v) =  v0 +  («0 in the Banach Space C2+x.
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2. Review  of N ew ton’s m ethod

We recall here the basic theorem (1) of Newton’s method, that will be 
applied in the next paragraph to equation (1,20).

We consider the equation

(2.1) x  =  S (x)

in a Banach Space , under the hypothesis that S(x)  has a continuous 
Fréchet derivative in a ball || # — 2r0j| <  R (possibly R =  +  00). 

Furthermore we consider the real equation

(2.2) t  =  (t)

where 9 (/) is a continuously differentiable function in an interval (t0 , tf), 
with tx <  l0 +  R.

We say that equation (2,2) majorizes equation (2,1) in the interval
( h  , h )>  if

(2.3) a) Il S (# ) -— *o H <  tp (̂ o) ■— 10

b) \\x —  x Q\\ <  t — 10 - > II S' (x) II <<?'(/).

We have the following

T h e o r e m  II. I f  equation (2 ,2 )majorizes (2*1) in ( t0 ytf) and i f  (2,2) 
has at least a solution i in (tQ , tf)y then

a) (2,1) has at least a solution x in the ball

fi =  {Ik  — II <  r  =  h  — 10}
j b) the sequence

(2.4) %n+1 ^  S (Xn

starting with x 0 is convergent to a solution x* of (2,1), satisfying

(2.5) II** — *o|| <  t* — 10

where t* is the smallest root of (2,2) in (t0 i ti).
Moreover, i f  (2,2) has a unique solution t* in (tQ , tf) and i f

? f t)  <  h
then

c) (2,1) has a unique solution x* in Q, satisfying (2,5)

d) the sequence x n starting with any x ! e Q is convergent to x*.

(1) See M. M .Vaïnberg, Variational methods for the study of non linear operators, Holden 
Day, 1964.
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3. A pplication  o f N ew ton’s m ethod to  th e  fu n d am en ta l equation

Let us choose =  C,2+x and

(3.1) S (v) =  we +  (xQ (v) :

from (1,21) and (1,22) we see that S (v) is defined on C2+X‘ Besides we 
have the identity (3,2)

(3.2) S (v -|~ -— S (v) — [J.GB (v , Sv) +  [jlGB (8^, v) +  piQ (8z>)

recalling that || Q (§v) || <  ch || $v ||2, from the definition of Fréchet derivative, 
we get

S' (v) =  vQ' (v) =  (xGB ( v , - ) +  [xGB ( . , * ) •

In analogy with (1,15), it is easy to prove that

Il B (* , ») ||x <  h II u H2+X II » ||*+x 

so that, recalling (1,16) we derive

(3.3) II S’ (») II <  2 [ich II w II .

The inequality (3,3) proves that S'(v)  is defined and continuous.
Let us now consider a param eter such that

(3.4) I k — » o l l < L  (̂ 0 =  0)

and the real function

(3.5) ? 00 =  V-th (Il Vf, II +  t f .

We have!, for any t >  o,

Il S ko) — »0 II =  II fJ-Q (»0) II <  II »0II2 =  <P (o) ,

I k  — » o l l  < t - *  II S' k )  II <  2 \ick II t ;  II <  2  \uh  (II » „  II +  t) =  (t) :
therefore we can conclude that: 

the real equation

(3.6) * =  ?■(*) =  V-ch dl vo II +  0 2

majorizes equation (1,20) in any interval (o , tj), that is any ball of C2+x

Q =  {\ \v— »oll < 4 }  .

Equation (3,6), on condition that

(3.7) 4 ( ^ l k o l l < i
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has the real roots

(3 ,8)
I ' 2 \j.ch [I v01[ T  f  i — 4 [uh II v01]

2 [ich \ r .

We can observe that, by means of (1,21), (3,8) becomes

(3.9) 4 h II v («) ||2+x <  I

wich is almost identical (1,17).
Moreover we notice that if (rx <  tx <  r2) so that 9 (t^) <  tv then there 

is only one root of (3,6) in (o , ^); if on the other 4 [ich || vc || =  1, then 
rx =  r 2 =  Il vw II, so that, choosing tx =  || v0 || we have 9 (^) =  ^  and 
equation (3,6) has still only one solution in (0 ,^ ) .  Consequently, using 
Theorem II of § 2, we can state the

T h e o r e m  III.  Under the condition that

(3.9) 4\Lâk\\v0 \ \ < i

a) the sequence of successive approximations starting with any v r 6 Q

(3.9) n  =  {\\v~— v0 \ \ < r 2}

is convergent to a solution v* of (1,20):

, b) v* is unique £}, i f  rt <  r2 or in O i f  r1 =  r2 and satisfies the inequality

C3>10) 11^ — ^oll .

Remark. We also recall here, in short, a theorem of continuous de­
pendence of the solution v on the boundary values v (a), theorem that has 
already been proved in “ The boundary value problem of physical geodesy 
in gravity space

Let us first observe that since || v0\\ <  c \\ v (a) ||2+x, it is enough to prove 
the continuous dependence of v on v0 .
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From the identity (recall also (3,2))

Q (y +  Sv) =  Q ( v ) +  Q'(v) Sv +  Q (Sv)

we have

(3,11) Sv =  &/0 +  [xQ' (v) Sv +  [xQ (Sv) .

Suppose now that 4 \ich \\v0\\ <  1.
Since it is r x <  limoli» from (3,10) we get

l b Ì I < 2 | k o l | .

Consequently, putting P (v) — (I — [xQ2 (v))"1

(3.12) II nQ'(") II <  2 yxh II ff II <  4 \uh II II <  I -  Il P (v) II <

From (3,11) and (3,12) we derive

(3.13) 8» =  P (v) Sv0 +  [XP (v) Q (Sv) .

It is now easy to prove that if

4 jich 11 8p0.11 
(1 ■ \\xch II v0 II)2

(3.13) has a solution which satisfies

(3.14) I l l ' l l  
Q.E.D.

I — 4 Pch II v0 I

<  I

2 II 8z/01
i ~ 4 [ i c k \ \  v0 \ 

4 . D iscussion

Theorem III guarantees the uniqueness of the so lu tio n v* only in the 
open ball Q (in the closed ball Q if r2 =  rt). Then we cannot exclude that 
there be other solutions v, with

(4,1) II v —  v0 II >  r2 ( > r 2 if r2 =  r^) .

Thus the problem arises if v* is the only “ a priori ” correct solution 
from the physical point of view. We can answer in the affirmative by 
reasoning on the continuity of v in v (<£).

Suppose in fact that we let v (a) —>0 continuously in C2+x. This corre­
sponds to a mass configuration that tends to the spherical one, for which 
u (a) = M  ̂ (a) and then v (a) =  o. We expect that the correct solution v,
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which is the perturbation of the spherical potential u — will tend
continuously to zero as well. On the other hand we can observe that

v (a) l2+X ri O , r2 2 ack

Consequently, taking .(3,10) and (4,1) into account, we have

v* —> o (continuously), * - K o ( i l « l l > — j ) ;

therefore we recognize v~* as the unique acceptable solution.


