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Equazioni differenziali ordinarie. — 4 generalzzation of a theorem
of Reissig for a certain non-autonomous differential equation. Nota® di
RAINER ANSORGE e Bauman MEHRI, presentata dal Socio G. SANSONE.

RiasSUNTO. — In questa Nota & generalizzato un teorema di R. Reissig sull’esistenza
di una soluzione periodica dell’equazione differenziale non autonoma

x(n+1)_l_alx(n)+...+anx'+f(t,x)=e(z‘).

1. INTRODUCTION. In the paper [1] Reissig investigated the existence
of periodic solutions of the equations

(1) x D gy g o gy (1) = ¢ ()

where a; (¢ =1,2,---,7) are real positive constants and the assumption
on f is such that |f(x) | < F (a constant) for all x. This assumption is very
strong and its applications are very limited.

The object of the present Note is to extend Reissig’s result further, i.e.
we consider the equation

(2) 2D Log L Lg ) =e(f),a, FO

where the functions f(#,x) and e () are continuous real valued functions,
periodic with respect to ¢ of period o,

ie. fl+o,20)=Ff0¢,2),e(t+w)=2c(®) and fe(t)dt‘=o

(f (¢, %) not necessarily bounded for all x).

We further assume that the #-th degree polynomial P, (A) = A" -
+ @y A! ...+ g, has =-distinct roots A; 70, ¢=1,2,---,%, and
all solutions of initial value problems for (2) extend to [0, w].

It will be shown under some conditions on /: There exists at least one
solution of (2) satisfying the periodic boundary conditions

(3) x‘i)(o)=x(i’(co), I=0,1,2, -+,%n

The method which is used here is similar to Lazer’s one [3].

2. In this section P, (A) designates a polynomial of degree » (# arbitrary),
for which the coefficient of A® equals 1.

(*) Pervenuta all’Accademia il 6 settembre 1976.
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LEMMA 1. If P, (X) is a polynomial of degree n with distinct roots N; 7 o,
t=1,2, -+,m, then for n>2

3

(4) 1 =‘ n (7\ z) =°
and
) 5 A

1=1 7\ P, ()\@) 7\1 )\2' * '7\n

=1

Proof. (By Lagrange’s interpolation theorem). If /(%) is a function with
given values in #n-distinct points %y, %, -, X, , then there exists an unique
polynomial of maximal degree #» — 1 which coincides with / at these distinct
points. This polynomial is given by

) Qus® = X 1e0)/ ()
where
jE[l A —2y)
Ly ) = 2

and we have Q,_; (A) =f () if f itself is a polynomial of maximal degree
17— 1. In particular when f (A) = 1, the coefficient of A*! in (6) has to vanish
(# > 2) and we obtain (4). The coefficient of A° in (6) has to equal 1; this
leads to
S | L | LB
Py e A P’ D)
i1
or

3 r = 0
S AP () i

which completes the proof of Lemma 1.

LeEMMA 2. If P, (\) satisfies the assumptions of Lemma I, then
igx Py (A

Progf. We proceed by induction: (7) is already proved for j = o (see (4)).

Now assuming that (7) is true for any j = K =< » — 3, then

n—1 )\K n—-1 K+1 — 7\111<+1 7»55“
°= ; P () -Z P, (M) 21( <M) Pr () Ty (M)) -
7\K+1 K n 7\K+1

2 Pl " Z (7\1,) 2 Pr’:(li) '

)

=0, J=0,1,2, -, n—2,

(Note: P, (\) = (\i —A,) Pry (A)). Hence Lemma 2 is proven.
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LEMMA 3. With the assumptions of Lemma I, we have

n 7\"}—'1
8 = = 1.
( ) 1.=Zl Pn O\i)
Proof. Assume n = 2, then
}2.: L. Sy Moy
&P (M) h—N A—N

which is true. Now assume (8) is true for #»—1, i.e.

n-—-1 n—1 ;\'I}—-Z )\n—l )\n—

n-—1 7\n 2 n—1
Zmam‘?vm>lgvmﬁwmalWﬂ»

}\n—l n

n , n 1, n )\1?,—-1
A MATG T AT

I
”

which completes the proof of Lemma 3.

3. GREEN’S FUNCTION. We can define the Green’s function for the
equation

, I
(9) y(n+1)_‘_ @ y(n) 4ot a,y = e
with the periodic boundary conditions’
y(i)(()):y(i)(m)’ Z'=Orls2’;"’n
as
1 n (w0 —3+0) P
S = =
\ o T A NTLO) e | ae OSI<ss0e
G, =
e)\j(t—s) P
< <
2dn+2 kP;;()\j)(e)‘Jw—“I> —I—an(})’ 0=S<t_—_—0~))

provided that MO £ 1 vJ=1,2,--,7n. Then using Lemmas i-3, we
can easily show that indeed

@) G (¢,5) is continuous with its derivatives up to order #»—1 on
[o,w]X[o,w], and furthermore there exist constants M, and M, such that
IG@#,)| <M, |Gi(#,s)| <M, for all (¢,5)€ [0, ®]X[o, w].

=1

b

)

G(?f ) = G(t S) , 1=0,1,2, -7

art 9&" t=
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4. MAIN THEOREM. Assume that the following conditions hold:

Daf(,x) =o0 for |x| =06 with some non-negative real number b,
and jfor all t.

i) There exists a constant D, such that
(10) 64+3m <D

whiere

m = max {M , oM; (M + E)}
and

M=max{|f(?,x)]:7e[o,w],|x| <D} , E=max{|e(®)|:¢¢e [0, 0]}

Then equation (2) has at least one solution x () satisfying the periodic boundary
conditions (3).

Proof. Let us consider the following integral equation

[0]

() PO =[G UG rE)—e 0} ds

0

It follows that x (#) defined as in (11) satisfies the periodic boundary condi-
tions (3), and moreover

B 2 o ayd A ) = O+ [ £ ) s
0
In what follows, we shall prove that (11) has a solution, say ¢ (¢), such that

ff<s,<p<s>>ds=o.

Let S be the space of all continuous functions on [o,w]. If 8¢S, let
|0 =max |0 |,?e [o, ], and let R denote the real numbers, and let
B=SXR. If 8,a),(0,,2),0:,a)e B,z ,xe R, let us define
|6, [=10]+]a]|
21 (01, a) + 22 (0, @) = (#0 + 220, 2100 + 15 0,) .

With these definitions, B is a complete normed linear space. For each
(0,a)e B, we define

T [(8,a)] = (6%, a%)



206 Lincei ~ Rend. Sc. fis. mat. ¢ nat. — Vol. LXI -~ Ferie 1976

where

(12) 6*=a+{G(t,s){f(s,0(3))—8(3)}ds

a*:a——_;_ J‘f(s,e*,(s))ds.

0

Then T is a continuous mapping from B into B.
Let K={0,2)eBl||0|<D,|a|<é+2m}. In order to apply
Schauder’s fixed point theorem, one has to establish the following facts:

a) T (B)< B.
6) T (B) has a compact closure.

To prove (&), from one hand we have
fexi<la|+MjoM+Ey<é+2m-+m<D, for (8,a)e B,

and on the other and if — (4 + m) < a < (&4 m), since || 0*]] < D it follows
that

w

;% ’f@,e*@)ds <M < m;
;
consequently one obtains
(13) ~(5+2m>ga——%Jf(s,e*@)dsgb+zm.

0
Now, by considering the inequality
[0 —a]| <M <m,

the condition @ = & 4 . implies 6% (¥) = 4 and the condition ¢ < — (6 + m)
leads to 6% (/) < — & for all t.

Therefore by (i), for 6 +m <a <b -+ 2m, we have f(z, 0% () = o,
from which it follows that

(14) 5§a—%ff(s,6*(s))ds§b+2m,
0
and for — (6 + 2m) < a < — (6 4 m), we have f (¢, 8% (¢)) < o, and hence
(15) ~(6—I—2m)Saga-%)«ff(s,ﬁ*(s))dss—b.
: 0

Now, the assertion () follows from (13), (14) and (13).
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To prove (4), let (8,,4ay) be an infinite sequence in T (B), then we
have to show: There exists a subsequence {(Gzé,a;;)} and an element
(6%, 2¥)e SXR such that

lim | (65, , a,) — (0%, a%) | =o.
k—o0

We know that for every z € N there exists (0, , ,) € B such that T (0, , ,) =
= (0, , a,). Consider the function

Va® =[G @0 UG, 0, —e @) ds
and

= JAGt €, ) {f (5, 0u(s) — e ()} ds.

1]

Then |V, O <M;0(M 4+ E) <mand

—#M<MWMM+D<ELm

The preceding inequalities show that the sequence {V, (¥)} is uniformly
equicontinuous and is contained in a closed ball with radius # around the
origin By, (0) in S. By Ascoli’s Lemma, there exists a subsequence {V,}
of {V,} and a Ve B, (0) such that

lim | V,,— V| =o.
k—>o00

On the other hand since a,€ [~ (& -+ 2m), (6 + 2m)] for all we N, we
can extract a convergence subsequence denoted by {,}. Clearly the sub-
sequence {(B,, , an,)} of {(6s , an)} Where

. I ”
0%, = a,, + V., wd@:%—zwm%@w,
0
converges to (0%, 4), with 0* = a* 4+ V|, where «* is the limit point of a,,
(o]

and 4 = o* — —(% ff (s, 0% (s)) dsin S X R. This establishes assertion (). Now

0
by Schauder’s fixed point theorem there exists at least an element (¢ ,y)e B
such that

@ V=T @,7), ie cp=a+fG<z,s>{f(s,<p<s>>—e<s>}ds

[0

and ( f(s,@(s)ds =0, which completes the proof of the theorem.

[1]
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Remark. In case when the polynomial P, (A) does not have distinct roots,
then the construction of Green’s function as given in section 3 is more com-
plicated, but it is not hard to prove theoretically its existence. In particular
when # =1, and P, () = 2%, then we can define the Green’s function as
follows

/ 2
\(s——t——%); o<t<s<aw
'(z‘——-s—————); o<s<tr<o
2
obviously M, = —;—)-,M2= %

COROLLARY. [If in addition to all the hypotheses of our Main theorem,
the function f(t,x) is locally Lipschitzian with respect to x, then (2) has an
w-periodic solution.

5. In this section, we shall consider some applications of our main
theorem

(Ay): Consider the equation
(16) '+ 2+ Bx + 23 =Ecost

where E, B > o are real constants. We want to show that equation (16)
possesses at least one periodic solution of period 2, provided § and |E|
are sufficiently small. In order to do so, we must show that there exists a
constant D such that Condition (10) of our main theorem is satisfied. But for
the equation (16), we have M = max {8x 4+ 23:|x | <D} = D + D?® and
27
M, = ;szine_ , which implies 7 = (3 @ + ¢*") (8D + D* + | E ).
Therefore condition (10) is satisfied, if there exists a constant D such
that

D + D3 El<__ '
B + +| '—3(37c+e2n)D

or

D3+|E|S(W—B)D.

It is obvious, for o<P < and | E | sufficiently small, that

33w Jr &)
such a D exists.
(A,): Consider the equation

III

(18) + cx'+ x% = E cos ¢
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where E, ¢ > o are real constants. We want to show that equation (18) pos-
sesses a periodic solution of period 2, provided 2 J¢ <1, and |E| is suffi-
ciently small. It follows from section 3 that for the equation (18), we can define
the Green’s function as:

/

_1___sm]/c(rc——ls+l‘> + ? . o<ti<s<am
. 2 2sin e = 2w ‘
G(f,é‘)—‘:?
8_L+ sin Ye (7 +s—2) + ‘ ; osSs<f=<2m.
2 2sm}/c7t 2w
Now, since V?S—L,it follows sin y¢ 7t > 2 y¢, which implies M1=§_V‘C‘$—=£
2 4ce

6Y¢‘+I
4cyc

exists a constant D, such that

and m=2m- (D34 |E]). The condition (10) is satisfied if there

2¢ye

3T (I+6V')

Dt + |E| <

Now, if | E | is sufficiently small, it is obvious that such a D exists.

(Ag): Assume, instead of assumption (ii) of our main theorem,

(ll) f( ’x)

—~0 as |x |- oo uniformly in

Then equation (2) possesses a periodic solution of period w. In order to
prove this, we have to show that there exists a constant D such that condition
(10) of our main theorem is satisfied.

But condition (i)’ implies, for any ¢> o, that there exists a number L (¢)
such that

|f(,2)]| <eD if D>L() and |x|<D.

Now, assuming

O<8<min{i,——l—},
3 3Mye

b+3Mlello }
1—338’ 1—3M;d L9

D=rnax{

and

m = max {8D , M; (3D + | ¢|) o},

it follows that & + 37 <D, i.e. the condition (10) of our main theorem is
satisfied.

14, — RENDICONTI 1976, vol. LXI, fasc. 3-4,
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