Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Giuseppe Da Prato, Mimmo Iannelli, Luciano Tubaro

Stochastic differential equations in Banach spaces, variational formulation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 61 (1976), n.3-4, p. 168-176.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1976_8_61_3-4_168_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Analisi matematica. - Stochastic differential equations in Banach spaces, variational formulation ${ }^{(*)}$. Nota ${ }^{(* *)}$ di Giuseppe Da Prato, Mimmo Iannelli e Luciano Tubaro, presentata dal Corrisp. G. Stampacchia.

Riassunto. - Si danno risultati di esistenza e unicità, da un punto di vista variazionale, della soluzione per una equazione differenziale stocastica in spazi di Hilbert, in condizioni di non-lipschitzianità.

I. Introduction

Let us recall the definition of abstract Wiener space: let H_{0} be a separable Hilbert space; we will denote the set of finite projections on H_{0} by \mathscr{F}. Let X be a Banach space of which H_{0} is a dense subspace.

Definition i. ($\mathrm{H}_{\mathbf{0}}, \mathrm{X}$) is an abstract Wiener space if for any $\varepsilon>0$ there exists a projection $\mathrm{P}_{\varepsilon} \in \mathscr{F}$ such that

$$
P \perp P_{\varepsilon} \Rightarrow \mu\left(\left\{x:|P x|_{X}>\varepsilon\right\}\right)<\varepsilon
$$

where $\mathrm{P} \in \mathscr{F}$ and

$$
\mu\left(\left\{x:|\mathrm{P} x|_{\mathrm{X}}>\varepsilon\right\}\right)=(2 \pi)^{-\frac{n}{2}} \int_{\left\{x \in \mathrm{P}\left(\mathrm{H}_{0}\right):|\mathrm{P} x|_{\mathrm{X}}>\varepsilon\right\}} e^{-\frac{|x|_{\mathrm{H}_{0}}^{2}}{2}} \mathrm{~d} x
$$

where $n=\operatorname{dim} \mathrm{P}\left(\mathrm{H}_{0}\right)$.
Theorem I. Let $\left(\mathrm{H}_{\mathbf{0}}, \mathrm{X}\right)$ an abstract Wiener space; if B is any Borel set in $\mathrm{P}\left(\mathrm{H}_{0}\right)$, where $\mathrm{P} \in \mathscr{F}$, the measure

$$
\mu_{t}\left(\mathrm{P}^{-1}(\mathrm{~B})\right)=(2 \pi t)^{-\frac{n}{2}} \int_{\mathrm{B} \cap \mathrm{P}\left(\mathrm{H}_{0}\right)} e^{-\frac{|x|_{\mathrm{H}_{0}}^{2}}{2 t}} \mathrm{~d} x \quad n=\operatorname{dim} \mathrm{P}\left(\mathrm{H}_{1}\right)
$$

defined on all cylindrical sets ${ }^{(1)}$ in H_{0}, as an extension to cylindrical sets of X in such a way it is countably additive.

Example. Let X be a Hilbert space, $\mathrm{H}_{0}=\sqrt{\mathrm{S}} \mathrm{X}$ where S is a strictly positive trace-operator on X .
(*) Lavoro eseguito nell'ambito del G.N.A.F.A del C.N.R.
(**) Pervenuta all'Accademia il 7 settembre 1976.
(1) A cylindrical set is any set like $\mathrm{P}^{-1}(\mathrm{~B})$ for some $\mathrm{P} \in \mathscr{F}$ and some B , Borel set in $P\left(H_{0}\right)$.

Let V be a separable reflexive Banach space and H a Hilbert space such that $\mathrm{V} \leftrightarrows \mathrm{H} \subset \mathrm{V}^{\prime}{ }^{(2)}$. Let ($\Omega, \mathscr{E}, \mathrm{P}$) be a probability space, $\mathrm{H}_{0} \subset \mathrm{~V}$ a Hilbert space such that $\left(\mathrm{H}_{0}, \mathrm{~V}\right)$ is an abstract Wiener space, $\mathrm{W}(t)$ a Wiener process in $\left(\mathrm{H}_{0}, \mathrm{~V}\right)$ and \mathscr{F}_{t} the smallest σ-algebra such that $\mathrm{W}(s)$, $0 \leq s \leq t$, is measurable ${ }^{(3)}$.

Given the mappings

$$
\begin{aligned}
& f: \mathrm{V} \rightarrow \mathrm{~V}^{\prime} \\
& \mathrm{G}: \mathrm{V} \rightarrow \mathrm{~L}_{\lambda}^{*}\left(\mathrm{H}_{0}\right)
\end{aligned}
$$

where $L_{\lambda}^{*}\left(H_{0}\right)$ is the space of all operators T of the form $T=\lambda I+T_{0}$, with λ fixed in \mathbf{R} and T_{0} variable in the space of Hilbert-Schmidt operators in H_{0}. Putting $L^{*}\left(H_{0}\right)=\bigcup_{\lambda \in \mathbf{R}} L_{\lambda}^{*}\left(H_{0}\right)$, it is easy to see that $L^{*}\left(H_{0}\right)$ is a Hilbert space ${ }^{(4)}$; our G's are particular functions from V in $L^{*}\left(H_{0}\right)$. We will study the stochastic Cauchy problem:

$$
\left\{\begin{array}{l}
\mathrm{d} u(t)=f(u(t)) \mathrm{d} t+\mathrm{G}(u(t)) \mathrm{d} \mathrm{~W}_{t} \tag{P}\\
u(0)=u_{0} \in \mathrm{~L}_{0}^{p}(\mathrm{~V})
\end{array}\right.
$$

with $p \geq 2$. In the non-stochastic case ($G=0$), if $-f$ is assumed to be a monotone, hemicontinuous and coercive mapping, a solution of (P) is found by the Faedo-Galerkin approximation and the same method works in the case $G=I$ (see [I]). In the general case it is not possible to use this procedure for there is no general existence theorem for finite-dimensional stochastic equations and hence it is not possible to get approximate solutions of (P) without adding some other condition ${ }^{(6)}$.

In this paper we show existence for (P) via the Yosida approximation in H putting on f and G suitable conditions that in the non-stochastic case reduce to the classical hypothesis used in a variational framework. These conditions have been also used in [8], together with some additional assumptions which allow to use the Faedo-Galerkin approximation.
(2) $\mathrm{X} \subset \rightarrow \mathrm{Y}$, where X, Y are two B -spaces, means: $\mathrm{X} \subset \mathrm{Y}$ with continuous injections.
(3) More generally \mathscr{F}_{t} is an one-parameter family of σ-algebras such that W_{s} is \mathscr{F}_{t}-measurable for $0 \leq s \leq t$ and, for $t \geq s, \mathscr{F}_{s}$ and $\mathrm{W}_{t}-\mathrm{W}_{s}$ are independent (see [4]).
(4) $L^{*}\left(\mathrm{H}_{0}\right)$ is a Hilbert space with respect to scalar product

$$
(\mathrm{T}, \mathrm{~S})_{*}=\sum_{v=1}^{\infty}\left(\mathrm{T} f_{v}, \mathrm{~S} f_{v}\right)
$$

where $\left\{f_{v}\right\}$ is any orthonormal basis in H_{0}; the scalar product is independent from the choice of the basis.
(5) $\mathrm{L}_{\boldsymbol{t}}^{\boldsymbol{p}}(\mathrm{X})$ is the space of functions $\mathrm{L}^{p}\left(\Omega, \mathscr{F}_{t}, \mathrm{X}\right)$, where X is a Banach space.
(6) Concerning existence in the finite dimensional case, see [3].

We look for a solution of (P) with the following properties:

$$
\begin{equation*}
u \in \mathrm{C}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{p}(\mathrm{~V})\right) \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
f(u) \in \mathrm{L}^{q}\left(0, \mathrm{~T} ; \mathrm{L}_{l}^{q}\left(\mathrm{~V}^{\prime}\right)\right) \quad \frac{\mathrm{I}}{p}+\frac{\mathrm{I}}{q}=\mathrm{I} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{G}(u) \in \mathrm{L}^{2}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{2}\left(\mathrm{~L}^{*}\left(\mathrm{H}_{0}\right)\right)\right) \tag{3}
\end{equation*}
$$

so that the stochastic differential in (P) makes sense.
The following lemmas will be used to get estimates, actually they precise our use of the Itô formula.

Lemma 1 . Let $u \in \mathrm{C}\left(\mathrm{o}, \mathrm{T} ; \mathrm{L}_{t}^{2}(\mathrm{H})\right)$ have the stochastic differential

$$
\mathrm{d} u=a(t) \mathrm{d} t+\mathrm{B}(t) \mathrm{dW}_{t}
$$

and suppose that $a \in \mathrm{~L}^{2}\left(\mathrm{o}, \mathrm{T} ; \mathrm{L}_{t}^{2}(\mathrm{H})\right), \mathrm{B} \in \mathrm{L}^{2}\left(\mathrm{o}, \mathrm{T} ; \mathrm{L}_{t}^{2}\left(\mathrm{~L}^{*}\left(\mathrm{H}_{0}\right)\right)\right.$); then:
(4) $\quad|u(t)|_{\mathrm{L}^{2}(\mathrm{H})}^{2}=\left|u_{0}\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}+\int_{0}^{t} \mathrm{E}\left\{2(a(s), u(s))+\|\mathrm{B}(s)\|_{\mathrm{L}^{*}\left(\mathrm{H}_{0}\right)}^{2}\right\} \mathrm{d} s$.

Proof. Let $\varphi_{k}: \mathbf{R} \rightarrow \mathbf{R}$ be a sequence such that

$$
\left\{\begin{array}{lll}
\varphi_{k} \in \mathrm{C}^{2}(\mathbf{R}) \quad, \quad \varphi_{k}(0)=0 \quad, \quad\left|\varphi_{k}(r)\right| \leq c k \quad, \quad \varphi_{k}(r) \rightarrow r \\
\left|\varphi_{k}^{\prime}(r)\right| \leq c & , \quad \varphi_{k}^{\prime}(r) \rightarrow \mathrm{I} \quad, \quad\left|\varphi_{k}^{\prime \prime}(r)\right| \leq \frac{c}{k}
\end{array}\right.
$$

Define the mapping $\Phi_{k}: H \rightarrow V$ putting:

$$
\Phi_{k}(x)=\sum_{i}^{k} \varphi_{k}\left(x_{i}\right) e_{i}
$$

$$
\forall x \in \mathrm{H}
$$

where $\left\{e_{i}\right\} \subset \mathrm{V}$ is a basis in H and $x_{i}=\left(x, e_{i}\right)$. Then we have:

$$
\begin{aligned}
\mathrm{d}\left|\Phi_{k}(u(t))\right|^{2} & =\left[2\left(\Phi_{k}(u(t)), \Phi_{k}^{\prime}[u(t)] a(t)\right)+\right. \\
& +\left\|\Phi_{k}^{\prime}[u(t)] \mathrm{B}(t)\right\|_{\mathrm{L}^{*}\left(\mathrm{H}_{0}\right)}^{2}+ \\
& \left.+\left(\Phi_{k}(u(t)), \mathrm{TR}\left\{\Phi_{k}^{\prime \prime}[u(t)](\mathrm{B}(t) \cdot, \mathrm{B}(t) \cdot)\right\}\right)\right] \mathrm{d} t+ \\
& +2\left(\Phi_{k}(u(t)), \Phi_{k}^{\prime}[u(t)] \mathrm{B}(t) \mathrm{dW}_{t}\right) .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
& \left|\Phi_{k}(u(t))\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}=\left|\Phi_{k}\left(u_{0}\right)\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}+ \\
& +\int_{0}^{t} \mathrm{E}\left\{2\left(\Phi_{k}(u(s)), \Phi_{k}^{\prime}[u(s)] a(s)\right)+\left\|\Phi_{k}^{\prime}[u(s)] \mathrm{B}(s)\right\|_{\mathrm{L}^{*}\left(\mathrm{H}_{0}\right)}^{2}+\right. \\
& \left.+\left(\Phi_{k}(u(s)), \operatorname{TR}\left\{\Phi_{k}^{\prime \prime}[u(s)](\mathrm{B}(s) \cdot, \mathrm{B}(s) \cdot)\right\}\right)\right\} \mathrm{d} s
\end{aligned}
$$

and going to the limit we get (4).

Lemma 2. Let us suppose that

$$
\begin{aligned}
& u \in \mathrm{~L}^{p}\left(0, \mathrm{~T} ; \mathrm{L}_{t}^{p}(\mathrm{~V})\right) \quad, \quad u(0)=u_{0} \in \mathrm{~L}_{0}^{p}(\mathrm{~V}) \\
& a \in \mathrm{~L}^{q}\left(0, \mathrm{~T} ; \mathrm{L}_{t}^{q}\left(\mathrm{~V}^{\prime}\right)\right) \\
& \mathrm{A} \in \mathrm{~L}^{p}\left(0, \mathrm{~T} ; \mathrm{L}_{t}^{p}(\mathrm{~V})\right) \quad \text { where } \mathrm{A}(t)=\int_{0}^{t} a(s) \mathrm{d} s \\
& \mathrm{~B} \in \mathrm{~L}^{2}\left(0, \mathrm{~T} ; \mathrm{L}_{t}^{2}\left(\mathrm{~L}^{*}\left(\mathrm{H}_{0}\right)\right)\right)
\end{aligned}
$$

such that
then

$$
u(t)=u_{0}+\int_{0}^{t} a(s) \mathrm{d} s+\int_{0}^{t} \mathrm{~B}(s) \mathrm{dW}_{s}
$$

(4) $\quad|u(t)|_{\mathrm{L}^{2}(\mathrm{H})}^{2}=\left|u_{0}\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}+\int_{0}^{t} \mathrm{E}\left\{2|a(s), u(s)|+\|\mathrm{B}(s)\|_{L^{*}\left(\mathrm{H}_{0}\right)}^{2}\right\} \mathrm{d} s$.

Proof. We state that it is possible to find a sequence $\mathrm{A}_{n} \in \mathscr{D}\left([\mathrm{o}, \mathrm{T}] ; \mathrm{L}_{t}^{p}(\mathrm{~V})\right)$ such that

$$
\begin{array}{ll}
\mathrm{A}_{n} \rightarrow \mathrm{~A} & \text { in } \mathrm{L}^{p}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{p}(\mathrm{~V})\right) \\
\mathrm{A}_{n}^{\prime} \rightarrow a & \text { in } \mathrm{L}^{q}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{q}\left(\mathrm{~V}^{\prime}\right)\right) .
\end{array}
$$

Then consider

$$
u_{n}(t)=u_{0}+\mathrm{A}_{n}(t)+\int_{0}^{t} \mathrm{~B}(s) \mathrm{dW}_{s} .
$$

Clearly $u_{n} \rightarrow u$ in $L^{p}\left(o, T ; L_{t}^{p}(\mathrm{~V})\right)$, hence in $\mathrm{L}^{2}\left(\mathrm{o}, \mathrm{T} ; \mathrm{L}_{t}^{2}(\mathrm{H})\right)$; besides we can apply Lemma 1 to $\left(4^{\prime \prime}\right)$ to get

$$
\left|u_{n}(t)\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}=\left|u_{0}\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}+2 \int_{0}^{t} \mathrm{E}\left\{\left(\mathrm{~A}_{n}^{\prime}(s), u_{n}(s)\right)\right\} \mathrm{d} s+\int_{0}^{t} \mathrm{E}\left\{\|\mathrm{~B}(s)\|_{\mathrm{L}^{*}\left(\mathrm{H}_{0}\right)}^{2}\right\} \mathrm{d} s
$$

from which we get (4^{\prime}) as $n \rightarrow \infty$. At last our statement at the beginning of the proof can be proved by adapting the proof of Theorem 2.I, Chapter I, of [7].

2. Dissipativity, Coercivity and the approximate problem

Let us consider the following assumption:

$$
\begin{equation*}
2\langle f(x)-f(y), x-y\rangle+\|\mathrm{G}(x)-\mathrm{G}(y)\|_{\mathrm{L}}^{2}{ }^{*}\left(\mathrm{H}_{0}\right) \leq 0 \quad \forall x, y \in \mathrm{~V} . \tag{1}
\end{equation*}
$$

The pair (f, G) will be said decreasing if $\left(\mathrm{H}_{1}\right)$ is verified. We remark
that if $\left(\mathrm{H}_{1}\right)$ is verified then the mapping $-f: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ is monotone. The first consequence of $\left(\mathrm{H}_{1}\right)$ is the following theorem:

ThEOREM 2. Assume that $\left(\mathrm{H}_{1}\right)$ is verified, and let u and v be solutions of (P) with initial data u_{0} and v_{0} respectively; then the following estimate is true:

$$
|u(t)-v(t)|_{L_{l}^{2}(\mathrm{H})}^{2} \leq\left|u_{0}-v_{0}\right|_{L_{0}(\mathrm{H})}^{2} .
$$

The proof of Theorem 2 is got by Lemma 2 and it means uniqueness of the solution of (P).

Our second assumption is

$$
\begin{equation*}
2\langle f(x), x\rangle+\|\mathrm{G}(x)\|_{\mathrm{L}^{*}\left(\mathrm{H}_{0}\right)}^{2} \leq-\omega\|x\|^{p} \quad \forall x \in \mathrm{~V} \tag{2}
\end{equation*}
$$

where $\omega>0$. If $\left(\mathrm{H}_{2}\right)$ is verified then the pair (f, G) will be said to be coercive; obviously $\left(\mathrm{H}_{2}\right)$ yields coercivity for the mapping - f.

To complete the picture we also consider the following assumptions on f :
$\left(\mathrm{H}_{3}\right) \quad f$ is hemicontinuous and $\quad\|f(x)\|_{\mathrm{v}^{\prime}} \leq k\|x\|^{p-1}$.
In the following we suppose that $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ are verified to define the approximate problems and show convergence to a solution of problem (P).

First of all we consider the following mapping:

$$
\tilde{f}:\left\{\begin{align*}
\mathrm{D}_{\tilde{f}} & =\{x \in \mathrm{~V} \mid f(x) \in \mathrm{H}\} \tag{5}\\
\tilde{f}(x) & =f(x) \quad \forall x \in \mathrm{D}_{\tilde{f}}
\end{align*}\right.
$$

Owing to the assumptions \tilde{f} is a maximal dissipative operator in H so that we can define the Yosida operators

$$
\begin{equation*}
\mathrm{J}_{n}=\left(\mathrm{I}-\frac{\mathrm{I}}{n} \tilde{f}\right)^{-1}: \mathrm{H} \rightarrow \mathrm{~V} \quad n>0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
f_{n}=f \circ \mathrm{~J}_{n}=n\left(\mathrm{~J}_{n}-\mathrm{I}\right): \quad \mathrm{H} \rightarrow \mathrm{H} \quad n>0 \tag{7}
\end{equation*}
$$

with the well known properties:

$$
\begin{equation*}
\left|\mathrm{J}_{n}\right|_{\mathrm{L}} \leq \mathrm{I} \quad ; \quad\left|f_{n}\right|_{\mathrm{L}} \leq 2 n \tag{8}
\end{equation*}
$$

Yet we define:

$$
\begin{equation*}
\mathrm{G}_{n}=\mathrm{G} \circ \mathrm{~J}_{n}: \mathrm{H} \rightarrow \mathrm{~L}^{*}\left(\mathrm{H}_{0}\right) \quad n>0 . \tag{9}
\end{equation*}
$$

From $\left(\mathrm{H}_{1}\right)$ is follows that G_{n} is Lipschitz continuous so that the approximate problem:

$$
\left\{\begin{array}{l}
\mathrm{d} u_{n}(t)=f_{n}\left(u_{n}(t)\right) \mathrm{d} t+\mathrm{G}_{n}\left(u_{n}(t)\right) \mathrm{d} W_{t} \tag{n}\\
u_{n}(\mathrm{o})=u_{0}
\end{array}\right.
$$

has a unique solution $u_{n} \in \mathrm{C}\left(0, \mathrm{~T} ; \mathrm{L}_{t}^{2}(\mathrm{H})\right)$. In the next section we state some estimates on the sequence of approximate solutions, hence existence of one solution of (P).

3. Existence for (P)

Let $\left\{u_{n}\right\}$ be the sequence of solutions of $\left(\mathrm{P}_{n}\right)$. We have first:
Proposition I." Let $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ be verified; then:

Proof. It is only worth proving (io) and (11), as (12) and (13) easily follow from these. Now from (P_{n}) it follows (see Lemma 1):

$$
\begin{array}{ll}
\text { (10) } & u_{n} \text { is a bounded sequence in } \mathrm{C}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{2}(\mathrm{H})\right) \\
\text { (II) } & \mathrm{J}_{n} u_{n} \text { is a bounded sequence in } \mathrm{L}^{p}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{p}(\mathrm{~V})\right) \\
\text { (I2) } & f_{n} u_{n} \text { is a bounded sequence in } \mathrm{L}^{q}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{q}\left(\mathrm{~V}^{\prime}\right)\right) \\
\text { (I3) } & \mathrm{G}_{n} u_{n} \text { is a bounded sequence in } \mathrm{L}^{2}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{2}\left(\mathrm{~L}^{*}\left(\mathrm{H}_{0}\right)\right)\right) . \tag{II}
\end{array}
$$

$$
\begin{equation*}
\left|u_{n}(t)\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}=\left|u_{0}\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2^{2}}+ \tag{14}
\end{equation*}
$$

$$
+\int_{0}^{t} \mathrm{E}\left\{2\left\langle f_{n}\left(u_{n}(s)\right), u_{n}(s)\right\rangle\left\|\mathrm{G}_{n}\left(u_{n}(s)\right)\right\|_{L^{*}\left(\mathrm{H}_{0}\right)}^{2}\right\} \mathrm{d} s
$$

Let us remember that

$$
\left\langle f_{n}\left(u_{n}(s)\right), u_{n}(s)\right\rangle=\left\langle f_{n}\left(u_{n}(s)\right), \mathrm{J}_{n}\left(u_{n}(s)\right)\right\rangle-\frac{1}{n}\left|f_{n}\left(u_{n}(s)\right)\right|^{2}
$$

from which, because of the coercivity,

$$
\left|u_{n}(t)\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2} \leq-\omega \int_{0}^{t}\left\|\mathrm{~J}_{n}\left(u_{n}(s)\right)\right\|_{\mathrm{L}^{p}(\mathrm{~V})}^{p} \mathrm{~d} s+\left|u_{0}\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}
$$

We finally have:
Theorem 3. Let $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ be verified; then there exists at least one solution of problem (P).

Proof. Let us pick from the sequence $\left\{u_{n}\right\}$ a subsequence ${ }^{(7)}$ such that

$$
\begin{array}{rll}
u_{n} \rightarrow u & \text { in } & \mathrm{L}^{\infty}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{2}(\mathrm{H})\right) \\
\mathrm{J}_{n} u_{n} \rightarrow v & \text { in } \mathrm{L}^{p}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{p}(\mathrm{~V})\right) & \text { weak } \\
f_{n} u_{n} \rightarrow \chi & \text { in } & \mathrm{L}^{q}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{q}\left(\mathrm{~V}^{\prime}\right)\right) \\
\mathrm{G}_{n} u_{n} \rightarrow \psi & \text { in } \mathrm{L}^{2}\left(\mathrm{o}, \mathrm{~T} ; \mathrm{L}_{t}^{2}\left(\mathrm{~L}^{*}\left(\mathrm{H}_{0}\right)\right)\right) & \text { weak } \tag{18}\\
\text { weak } .
\end{array}
$$

(7) We will denote such a subsequence $\left\{u_{n}\right\}$ again.

Clearly (17), (16) and (15) imply that $u=v$ and that:

$$
\begin{equation*}
u(t)=u_{0}+\int_{0}^{t} \chi(s) \mathrm{d} s+\int_{0}^{t} \psi(s) \mathrm{dW}_{s} \tag{19}
\end{equation*}
$$

We have to show that:

$$
\chi(s)=f(u(s)) \quad, \quad \psi(s)=\mathrm{G}(u(s))
$$

which will be done adapting a classical method in abstract evolution equations (see [6]).

Let us consider

$$
\begin{aligned}
\mathrm{X}_{n}=\int_{0}^{\mathrm{T}} \mathrm{E} & \left\{2\left(f_{n}\left(u_{n}(s)\right)-f(v(s)), \mathrm{J}_{n}\left(u_{n}(s)\right)-v(s)\right)\right\} \mathrm{d} s+ \\
& +\int_{0}^{\mathrm{T}} \mathrm{E}\left\{\left\|\mathrm{G}_{n}\left(u_{n}(s)\right)-\mathrm{G}(v(s))\right\|_{L^{*}\left(\mathrm{H}_{0}\right)}^{2}\right\} \mathrm{d} s
\end{aligned}
$$

It is $\mathrm{X}_{n} \leq 0$ because of the dissipativity, on the other side:

$$
\begin{aligned}
\mathrm{X}_{n} & =2 \int_{0}^{\mathrm{T}} \mathrm{E}\left\{\left(f_{n}\left(u_{n}(s)\right), \mathrm{J}_{n}\left(u_{n}(s)\right)\right)\right\} \mathrm{d} s+\int_{0}^{\mathrm{T}} \mathrm{E}\left\{\left\|\mathrm{G}_{n}\left(u_{n}(s)\right)\right\|_{*}^{2}\right\} \mathrm{d} s+ \\
& -2 \int_{0}^{\mathrm{T}} \mathrm{E}\left\{\left(f(v(s)), \mathrm{J}_{n}\left(u_{n}(s)\right)-v(s)\right)\right\} \mathrm{d} s+ \\
& -\int_{0}^{\mathrm{T}} \mathrm{E}\left\{\left(\mathrm{G}(v(s)), \mathrm{G}_{n}\left(u_{n}(s)\right)-\mathrm{G}(v(s))\right)_{*}\right\} \mathrm{d} s+ \\
& -2 \int_{0}^{\mathrm{T}} \mathrm{E}\left\{\left(f_{n}\left(u_{n}(s)\right), u(s)\right)+\frac{\mathbf{1}}{2}\left(\mathrm{G}_{n}\left(u_{n}(s)\right), \mathrm{G}(v(s))\right)_{*}\right\} \mathrm{d} s
\end{aligned}
$$

(14) implies:

$$
\begin{aligned}
\left|u_{n}(\mathrm{~T})\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2} & -\left|u_{0}\right|_{\mathrm{L}^{2}(\mathrm{H})} \leq 2 \int_{0}^{\mathrm{T}} \mathrm{E}\left\{\left(f_{n}\left(u_{n}(s), \mathrm{J}_{n}\left(u_{n}(s)\right)\right)\right\} \mathrm{d} s+\right. \\
& +\int_{0}^{\mathrm{T}} \mathrm{E}\left\{\left\|\mathrm{G}_{n}\left(u_{n}(s)\right)\right\|_{*}^{2}\right\} \mathrm{d} s
\end{aligned}
$$

hence as $n \rightarrow \infty$
(20)

$$
\begin{aligned}
\underline{\lim } \mathrm{X}_{n} & \geq|u(\mathrm{~T})|_{\mathrm{L}^{2}(\mathrm{H})}^{2}-\left|u_{0}\right|_{\mathrm{L}^{2}(\mathrm{H})}^{2}+ \\
& -2 \int_{0}^{\mathrm{T}} \mathrm{E}\{\langle f(v(s)), u(s)-v(s)|\} \mathrm{d} s+ \\
& -\int_{0}^{\mathrm{T}} \mathrm{E}\left\{(\mathrm{G}(v(s)), \psi(s)-\mathrm{G}(v(s)))_{*}\right\} \mathrm{d} s+ \\
& -2 \int_{0}^{\mathrm{T}} \mathrm{E}\{|\chi(s), v(s)|\} \mathrm{d} s+\int_{0}^{\mathrm{T}} \mathrm{E}\left\{(\psi(s), \mathrm{G}(v(s)))_{*}\right\} \mathrm{d} s .
\end{aligned}
$$

Now from (I 9) it is:

$$
\begin{align*}
&|u(\mathrm{~T})|_{\mathrm{L}^{2}(\mathrm{H})}^{2}=\left|u_{0}\right|_{L^{2}\left(\mathrm{H}_{0}\right)}^{2}+2 \int_{0}^{\mathrm{T}} \mathrm{E}\{\langle\chi(s), u(s)\rangle\} \mathrm{d} s+ \tag{2I}\\
&+\int_{0}^{\mathrm{T}} \mathrm{E}\left\{\|\psi(s)\|_{*}^{2}\right\} \mathrm{d} s
\end{align*}
$$

so that substituting in (20):

$$
\begin{align*}
& 2 \int_{0}^{\mathrm{T}} \mathrm{E}\{(\chi(s)-f(v(s)), u(s)-v(s)\rangle\} \mathrm{d} s+ \tag{22}\\
+ & \int_{0}^{\mathrm{T}} \mathrm{E}\left\{\|\psi(s)-\mathrm{G}(v(s))\|_{*}^{2}\right\} \mathrm{d} s \leq \lim \mathrm{X}_{n} \leq o .
\end{align*}
$$

This latter inequality gives:

$$
\int_{0}^{\mathrm{T}} \mathrm{E}\{|\chi(s)-f(v(s)), u(s)-v(s)|\} \mathrm{d} s \leq 0
$$

and the hemicontinuity yields, by a standard argument:

$$
\chi=f(u)
$$

On the other hand, from this, putting $v=u$ in (22) it is:

$$
\int_{0}^{\mathrm{T}} \mathrm{E}\left\{\|\psi(s)-\mathrm{G}(u(s))\|_{*}^{2}\right\} \mathrm{d} s \leq 0
$$

that is $\psi=G(u)$.

References

[1] A. Bensoussan and R. Temam (1972) - Equations aux derivees partielles stochastiques non lineaires (I), "Israel J. of Math.», II, 95-129.
[2] G. Da Prato, M. Iannelli and L. Tubaro - Some results on a stochastic differential equation, "Rend. Acc. Naz. Lincei» (to appear).
[3] G. Da Prato, M. Iannelli and L. Tubaro - Dissipative functions and finite-dimensional stochastic differential equations (to appear).
[4] I. I. Gihman and A. V. Sкоrohod - Stochastic differential equations Springer-Verlag.
[5] Kuo Hui-Hsiung (1975) - Gaussian measures in Banach spaces. Springer-Verlag.
[6] J. L. Lions (1971) - Quelques méthods de résolution des problèmes aux limites non-lineares. Dunod, Paris.
[7] J. L. Lions and E. Magenes (1968) - Problèmes aux limites non homogènes et applications. Dunod.
[8] E. Pardoux - Sur des équations aux dérivées partielles stochastiques monotones, «C. R. Acad. Sc. Paris», 275, 101-103.

