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Analisi matematica. — Stockastic differential equations in Banach
spaces, variational formulation ™. Nota 9 di Giuseppe Da Praro,
Mimmo IanNEeLLI e Luciano Tusaro, presentata dal Corrisp. G.
STAMPACCHIA.

RIASSUNTO. — Si danno risultati di esistenza e unicita, da un punto di vista variazio-
nale, della soluzione per una equazione differenziale stocastica in spazi di Hilbert, in condizioni
di non-lipschitzianita.

1. INTRODUCTION

Let us recall the definition of abstract Wiener space: let H, be a
separable Hilbert space; we will denote the set of finite projections on H,
by &#. Let X be a Banach space of which H, is a dense subspace.

DerFINITION 1. (Hg, X) 45 an abstract Wiener space if for any & >0
theve exists a projection P.e€ F such that

PIP.=p{x:|Pxly>eh)<e

where Pe F and

n l""?n,
wx: | Pxly>e}) = (2 ﬂ)_?f e % dx
{zePHy): [Pxl;>e}

where n = dim P (H,).

THEOREM 1. Let (Hy, X) an abstract Wiener space; if B is any Borel
set in P (Hy), where Pe F, the measure ‘

2
lzls,

b (PL(B)) = (27t T f e TE dy n = dim P (H,)

BNP(Hy)

defined on all cylindrical sets W in Hy, as an extension to cylindrical sets of X
in such a way it is countably additive.

Example. Let X be a Hilbert space, Hy = V§X where S is a strictly
positive trace-operator on X.

(*) Lavoro eseguito nell’ambito del G.N.A.F.A del C.N.R.

(**) Pervenuta all’Accademia il 7 settembre 1976,

(1) A cylindrical set is any set like P~1(B) for some P ¢ # and some B, Borel set
in P (Hy).
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Let V be a separable reflexive Banach space and H a Hilbert space
such that Ve HcV/ @, Let (Q,8, P) be a probability space, Hyc=V
a Hilbert space such that (Hy,V) is an abstract Wiener space, W (¥) a
Wiener process in (H,,V) and &; the smallest o-algebra such that W (s) ,
o < s < ¢ is measurable 3,

Given the mappings
fi: VoV

G: V—Lf(Hy)

where Ly (H,) is the space of all operators T of the form T = Al +T,,

with A fixed in R and T, variable in the space of Hilbert-Schmidt operators

in Hy. Putting L* (Hg) ={J LY (Hy), it is easy to see that L*(H,) is a
AeR

Hilbert space @; our G’s are particular functions from V in L* (Hy). We
will study the stochastic Cauchy problem:

[ du@) =7 (@) dt+ G (u @) dW,

() |
2% (0) = u,e 15 (V) ®

with p > 2. In the non-stochastic case (G = o), if —f is assumed to be
a monotone, hemicontinuous and coercive mapping, a solution of (P) is
found by the Faedo-Galerkin approximation and the same method works
in the case G =1 (see [1]). In the general case it is not possible to use
this procedure for there is no general existence theorem for finite-dimensional
stochastic equations and hence it is not possible to get approximate solutions
of (P) without adding some other condition ©.

In this paper we show existence for (P) via the Yosida approximation
in H putting' on f and G suitable conditions that in the non-stochastic
case reduce to the classical hypothesis used in a variational framework.
These conditions have been also used in [8], together with some additional
assumptions which allow to use the Faedo-Galerkin approximation.

(2) X< Y, where X,Y are two B-spaces, means: X < Y with continuous injections.

(3) More generally 4, is an one-parameter family of ¢-algebras such that W, is &F;-mea-
surable for 0 <s < # and, for # > s, %, and W, — W, are independent (see [4]).

(4) L* (H,) is a Hilbert space with respect to scalar product

(T, S}k =X (Tf,, S5

where {£,} is any orthonormal basis in Hy; the scalar product is independent from the choice
of the basis. .

(5) Lf (X) is the space of functions L? (Q, &%, , X), where X is a Banach space.

(6) Concerning existence in the finite dimensional case, see [3].
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We look for a solution of (P) with the following properties:

() ueC (o, T;LE(V))
(2 F @eLli(o,T; LIV %+%=1
(3 G (w)el? (o, T;LL* (Hy)))

so that the stochastic differential in (P) makes sense.
The following lemmas will be used to get estimates, actually they precise
our use of the Itd formula.

LEMMA 1. Zet ue C (o, T ;Li(H)) have the stochastic differential
du = a () dt + B () dW,
and suppose that ae L (o, T;L;(H)),BeL? (0, T; L} (L" (Hy)); then:

t

@ e R =l + [ B2 @) 26 +1B (O g} &5

0
Proof. Let ¢5: R — R be a sequence such that

(pkecz (R> ) Pk <O> =0 3 I‘Pk (7’) IS ck s P (7') —
| la®=se  a@->1 ok ()] <5 -

Define the mapping ®;: H — V putting:
k
Q. (%) =21:i<Pk (7)€ vre H
wﬁerg {e;} =V is a basis in H and x; = (¥, ¢;). Then we have:
AP ®) = [2(Pp (@), Bp [ (D] a () +
+ 1| @z [ ()] B () vy +
+ (@i (e (1), TR{® [# (D] (B (&), B (®)-)1] d¢ +

+ 2 (D (2 (D), By [ ()] B (¥) dW)) .
Hence: .
| @ (e () fLeany = | P (o) feoany +

B G @), %m0 +1 % w1 B 6w +

+ (@4 (2 (), TRA{® [ (] (B (), B())H} ds

and going to the limit we get (4).
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LEMMA 2. Let us suppose that
wel? 0, T;L0(V) , u(0)=uwueclf(V)

ael?(o,T;LI(VY)

Ael? (o, T;1E(VY)  where A(t):fa(s)ds
Bel? (o, T;L;1L* (Hy))

such that ¢ ¢
r

u(z‘)=u0—[~J a(x)ds—{—fB(s)dWs

then 0

@) u® fLem = | o [Lea) + J E {2 (a(s), () + I B(s) oo} ds -

Proof. We state that it is possible to find a sequence A,e% ([0, T]; L} (V))
such that

A, —A in L?(o,T;LE(V)
A,—a in L7, T;LI(VY)).
Then consider

o (8) = w0 + An (0) + f B (s) dW, .

Clearly s, —u in 17 (o, T ;17 (V)), hence in L* (o, T ; L} (H)); besides we
can apply Lemma 1 to (4'") to get

¢ t

|t () By = | 00 sy + 2 f E {(AL(5) ) un ()} ds + j E {1 B () [foguy) ds

0

from which we get (4") as #—oco. At last our statement at the beginning of the
proof can be proved by adapting the proof of Theorem 2.1, Chapter I, of [7].

2. DISSIPATIVITY, COERCIVITY AND THE APPROXIMATE PROBLEM

Let us consider the following assumption:

(Hy) 2 {fl)—f(),2—y) +1G @) —G ) lsayg<o Vx,yeV.

The pair (f,G) will be said decreasing if (H,) is verified. We remark
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that if (H,) is verified then the mapping —f:V — V' is monotone. The
first consequence of (H,) is the following theorem:

THEOREM 2. Asswme that (Hy) is verified, and let u and v be solutions
of (P) with initial data uy and vy rvespectively; then the following estimate is truc:

|2 (&) — v (2) lLtz(H)S | 226 — v, |L§(H).

The proof of Theorem 2 is got by Lemma 2 and it means uniqueness of
the solution of (P).
Our second assumption is

(Hy) 2 (F (@), 2) +1G @) Bepp< —ollx | VreV

where @ > o0. If (H,) is verified then the pair (f,G) will be said to be
coercive; obviously (H,) yields coercivity for the mapping — /.
To complete the picture we also consider the following assumptions

on f:

(Hy) 7 is hemicontinuous and L)y < &llalP .

In the following we suppose that (H,), (H,), (H,) are verified to define
the approximate problems and show convergence to a solution of problem (P).

First of all we consider the following mapping:
‘ Dy={xeV |f(x)eH}
(s) e ﬂ . .
(j@=f@ vreD;.

Owing to the assumptions 7 is a maximal dissipative operator in H so that
we can define the Yosida operators

©) Jn= (1—%]‘)_1; H -V "o

(7) fn:‘—‘f"Jn:”(Jn"‘_I) H—-H 7w >0

with the well known properties:

(8) ’JnIle H Ifn]LSzn-
Yet we define:
(9) Gn=G°Jn: H_>L*<Ho) n>o0.

From (H,) is follows that G, is Lipschitz continuous so that the approximate
problem:
s doy () = fo (uy (8)) dt + G, (u, (£)) AW,

(un (0) = u,

(Pa)
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has a unique solution #,€C (0o, T ;LI(H)). In the next section we state
some estimates on the sequence of approximate solutions, hence existence
of one solution of (P).

3. EXISTENCE FOR (P)

Let {«,} be the sequence of solutions of (P,). We have first:

PROPOSITION 1. Let (Hy), (H,), (Hy) be verified; then:

(10) u, s a bounded sequence in C (o, T ;Li(H))
(11) Jnttn is a bounded sequence in 1F (o, T ;LE(V))
(12) Sotta ts a bounded sequence in L7 (0,T ; LI(V')
(13) Gpot, is a bounded sequence in L* (o, T ;L7 (L* (Hy))) .

Proof. 1t is only worth proving (10) and (11), as (12) and (13) easily
follow from these. Now from (P,) it follows (see Lemma 1):

(14) | 2, (7) 'iZ(H) = | %, l%.?(H) +

+ f E {2 {fy (e (5)) » 20 (5)) 1| Go (ot (&) [t} s

Let us remember that

(fn on (J‘)) ) Un (5')) = (fn (22 () s Ju (n (S))) - ‘;— lfn (2a (5)) P

from which, because of the coercivity,

¢
l uy (1) liZ(H) <—ow J | Ja (a (5)) “I{)“(V) ds + | %, |12.2(H) .
0

We finally have:

THEOREM 3. Let (H,), (H,), (Hy) be verified; then there exists at least.
one solution of problem (P).

Proof. Let us pick from the sequence {,} a subsequence ? such that

(15) Uy — U in L®(,T;L{(H) weak*
(16) Jattw >v  in IP (0, T;LY(V)) weak
(17 Soty—y ~ in L? (o, T;LI(V") weak
(18) Gutty =¥ in L? (o, T;LIQA* (Hy))) weak .

(7) We will denote such a subsequence {#,} again.
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Clearly (17), (16) and (15) imply that # = 7 and that:

? t
(19 @ =0t [16 85+ [ 4@ aw,.
We have to show that:
2O =S @@ . $E =6 )

which will be done adapting a classical method in abstract evolution equations
(see [6]).

Let us consider

T

Xa = [ o G 6D =/ @6 Ja G () — 0 (59 ds +

0

+ f E | G (#a (5)) — G (¢ () [Eogug} ds .

It is X, << 0 because of the dissipativity, on the other side:

T T

Xo=2 [ EACa G0 Ta Gon N ds o [ EA1G Gy (12 5

2 [ B0, @) —v @) & +

0

- f E{(G @), Ga (4 () — G (0 (), ds +
2 [ B ) D+ L G D, G 0 () ds

(14) implies:

T .
| 26 (T) [y “‘.| %o |L2(H) =2 f E{(fa@n (9, ], (ua (5)))} ds +

n f E { G (otn () |} s
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hence as # — oo

(20) lim X, > | 2 (T) [Le — | %0 fLoany +
T

——zfE{<f<v<s>>,u<s>——v<s>)}ds+

0

~ [EGoo so—comias+
—2 [Ef@. v @has+ [ E{#©,G @@ ds

0

Now from (19) it is:
T

(21) Lo (T) [Loy = | #0 [fan + 2 [ E{{x(),u@)}ds+

+ f E {14 () 2} ds

so that substituting in (20):

T

(22) : [t —r 6@, u@—o@ha +

0]

+ [BO4O—c @R <tmX, <o

This latter inequality gives:

T

[Et©—rem s0=s0pes <o

0

and the hemicontinuity yields, by a standard argument:
x=r(w.

On the other hand, from this, putting = » in (22) it is

j' E {1 ¢()—G ()2} ds <o

0

that is ¢ = G (»).
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