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Fisica matematica. —  On plane-symmetric solutions of a scalar- 
tensor theory of gravitation. N ota(,) di K ishn Behari L al e M ohammad 
Qamrullah K h an , presentata dal Socio C. Cattaneo.

R iassunto. — Si ottiene una soluzione statica esatta della teoria scalare-tensoriale 
proposta da Dunn [5] nel caso della metrica impiegata da Kompaneets [8]. Per una scelta 
appropriata delle costanti arbitrarie la soluzione si riduce, come caso particolare, alla soluzione 
della teoria di Sen e Dunn ottenuta da Singh [9]. La nostra soluzione si riduce, in una situa
zione simile, alla soluzione delle equazioni di Einstein nel vuoto discussa in precedenza da 
Taub [io]. D ’altra parte uno studio comparativo del comportamento singolare delle nostre 
soluzioni in due casi particolari, mostra che esse ammettono tipi analoghi di singolarità. 
Finalmente viene studiata una soluzione non statica a simmetria piana, che in un caso par
ticolare descrive lo spazio-tempo vuoto non statico discusso da Bera [n ] .

i. Introduction

Various theories of gravitation have been proposed after general relativity. 
A viable theory of gravitation is one which satisfies three criteria: self consistency 
completeness and agreement with past experiment. The scalar-tensor theory 
of gravitation proposed by Brans-Dicke [1] is one of the few theories which 
have remained viable under these tests. It is well known that the general 
theory of relativity differs from the classical theory of gravitation largely in 
the geometrization of the gravitational field. Motivated by ideas of Mach, 
Brans and Dicke introduced an alternative theory of gravitation, widely 
known as Brans-Dicke theory. This theory is not purely geometrical, however, 
as the scalar field is introduced in a rather ad hoc manner in the Riemannian 
manifold.

Several attempts have been made to cast a scalar-tensor theory of gravi
tation in a wider geometrical context. Brans and Dicke observed in their 
work the formal connection between their theory and that of Jordan [2] which 
uses a five dimensional manifold. Ross [3] has constructed a scalar-tensor 
theory of gravitation using the Weyl formulation of Riemannian geometry 
and Sen and Dunn [4] have introduced a scalar-tensor theory modeled on 
a modification of Riemannian geometry suggested by Lyra. However, 
recently Dunn [5] has introduced a geometry which differs from the usual 
Reimannian geometry in that its linear connections have non vanishing torsion 
defined in terms of a scalar function. Based on this geometry, Dunn has for
mulated a scalar-tensor theory of gravitation whose field equations are identical 
in the vacuum case to those given by Dicke [6] in an alternate presentation 
of the Brans-Dicke theory. (*)

(*) Pervenuta all’Accademia il 28 luglio 1976.
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In the region of space-time with zero charge and mass densities, the 
field equations of this scalar-tensor theory are

(1.1) Rÿ — — gij R =  wX~2 * ^X(j Xy — — g i} X.» X'*j ,

(I -2) —  (X,,- V = ^ )  —  (X., X,i/X) ^  i ^ g  =  o  ,

where w =  6 k2 is a constant, R^- is the usual Ricci tensor, R is the curvature 
scalar of the metric gjj and X is the scalar field. A comma denotes partial 
differentiation with respect to the index which follows. The formalism of 
the geometry used in introducing the above field equations is such that if 
k =  o or X is a constant, the connection of the space-time is metric preserving 
and torsion-free; i.e., we have the Riemannian geometry.

Dunn has obtained static spherically symmetric solutions of these field 
equations and it has been found that, with a proper choice of the parameter 
k, this theory agrees with experimental results in the three classical tests of 
red shift, light deflection and perihilian advance.

In an earlier paper the present Authors [7] obtained cylindrical wave 
solutions of the scalar-tensor theory proposed by Dunn. The solution in a 
special case was shown to represent a plane wave in the sense of Bondi, 
Pirani and Robinson. The present paper is motivated to the investigation 
of plane symmetric solutions of the scalar-tensor theory under discussion. 
With this aim we have obtained, in this paper, static solution of the field 
equations (1.1) and (1.2) for the metric used by Kompaneets [8] and Lal 
and Khan [7]. I t is found that the static plane symmetric solution of Sen 
and D unn’s scalar-tensor theory discussed by singh [9] is a special case of our 
solution. On the other hand it is found that our solution also includes the 
static empty space-time solution, discussed by Taub [10], as a particular 
case. Further we have made a comparative study of the singular behaviour 
of our solution of the present scalar-tensor theory and that of T aub’s static 
plane symmetric solution of vacuum field equations of general relativity. 
It is concluded that both solutions admit a similar type of singularity. Lastly 
a non static plane symmetric solution of the field equations (1.1) and (1.2) 
has also been investigated, which in a particular case describes a non static 
empty space-time discussed by Bera [11 ].

2. Metric and the field equations

For the purpose of our present investigation we consider a space-time 
whose geometry is described by the metric ([7], [8])

(2.1) d^2 =  :-±- A (dx1) 2 ■— C (dx2)2 —  D (d*3)2 — 2 B d*2 d * * + A  (d*4)2,

where A , B , C , D are functions of x 1 and x4, (x1} x2, x 3 denote space coor
dinates whereas a:4 corresponds to time coordinate t). For this space-time
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the non vanishing components of the Ricci tensor -R# are given by

Rii =  «11/2 a — ai/4 a2 +  (Lu — L 44) +  (B4 — Q  Dx)/2 a —

— (Aj a4 +  A 4 a4)/4A a ,

(2.2)

R44 =  a44/2 a — a4/4 a2 — (Lu — L 44) +  (B4 — C4 D4)/2 a —

— (Aj a4 -f A4 a4)/4A a ,

Ri4 =  a14/4a  — aj a4/4 a2 +  (2 B4 B4 — C4 D 4 •— C4 D4)/4 a —

— (A4 a4 +  A 4 ocO/4 Aa ,

R22 =  (2 A)~i (C ; a , P) , R 3 3  =  (2 A)-* (D ; a , P) ,

R23 =  (2 A) 1 (B ; a , P) ,

where the notations are as follows

(X ; a , P) =  [Xu -  X 44 -  (2 a ) '1 {X4 a4 -  X 4 a4 +  2 XP}] , 

P — (Bi -— B4 — Q  Dj +  C4 D4) ,

and we have used

(2.3) A =  ^ L , a =  CD — B2.

A simple calculation shows that equation (1.1) on contraction yields 
R =  w\~z (Xfi X’1). Consequently (1.1) assumes a simple form

(2.4) Rij == h t i h 9, ,

where

(2.5) X =  eĥ w .

The functional dependence of the metric tensor on the space-time coordinates 
obviously implies that the scalar field X, and consequently hy m ay be taken 
as a function of x 1 and x4 . W ith this assumption equations (1.2) and (2.4) 
simplify to

(2.6) kn  — +  (ai/2 a) A  — (a4/2 a) A  =  o ,

(2.7) Ru =  .A  , R 44 =  A  , R14 =  A A  , R22 =  R33 ^  R-23 ^  0 f

where h ti =  A» and the lower suffixes 1 and 4, here and here after, correspond 
to partial differentiation with respect to x 1 and x4 respectively.
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Using (2.2), multiplying R22 by D , R23 by — 2 B , R 33 by C and adding, 
we obtain

(2 *8) ( V a ) u —

where a is as given in (2.3).

3. A STATIC SOLUTION

In this section we restrict ourselves to the static case. Thus assuming 
that the unknown functions involved in the above equations are independent 
of x* and depend on x 1 only, equations (2.6)-(2.8), on substitution of R# from
(2.2), simplify to

k " +  (ti  a'/2 a) =  o , L " +  (L' a'/2 a) =  o ,

L "— (L' a'/2 a) — (B'2 •— C' D')/2 a =  A'2,
(3-1)

C " ~  C  a'/2 a — (C/a) Q =  o , D"— (D' a'/2 a) — (D/a) Q =  o , 

B" — (B' a'/2 a) — (B/a) Q =  o ,

where Q =  (B'2— C 'D'), and a dash overhead denotes ordinary differen
tiation with respect to x 1.

Equation (2.8) for the static case yields a solution

(3*2) oc =  (£x x 1 +  k2)2.

On the other hand, equations (3.1) by virtue of (3.2), exhibit on integration 

(3-3) L =  (^3/^1) log (£j x 1+  k2) +  , h =  (4 /^0  log (kx x x +  4 )  +  k% ,

C == e* (kx x r-\- k2) cos A j-^ -  log (kx x x-\- k2)

D == e~k (kt x x-\- k2) cos A |  —  log (kx x x-\- £2) J ,

B =  (kx x 1Jr k2) sin h j-^—- log (kx x x+  k2) J ,

where k  and all k^s  are constants of integration and kx , k z , kh , >é7 , are 
related as

(3 4 ) A  (̂ 1 +  4 3̂) =  ^  2 5̂ +  k*, A  =  .
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Thus (3.3) and (3.4) along with (2.1) characterize a static solution of the field 
equations of the scalar-tensor theory, i.e., (1.1) and (1.2) . On analysing this 
solution the following interesting cases arise.

(i) If kQ =  k7 =  o , (3.3) reveals that B =  o and C =  e2k D, which 
by a suitable coordinate transformation can be reduced to C == D. In this 
case the metric (2.1) transforms into the static plane symmetric metric of 
Taub, and the corresponding solution is given by the metric (2.1), where

(3.5 a) L =  J log A =  (ka/k0 log (kx x 1 +  k2) +  k t ,

C =  D =  (kx x 1 +  k2) , B =  o ,

and the scalar function h is given by

(3-5 t>) i —  (1/2 kt) (kx +  4 4 )  log {K x x+  k2) .

In order that the scalar function h be real, it is evident from (3.5 b) that

k z\k i<-— — . It is at the same time interesting to note that in this case (3.5 a) 
4

and (3.5 b) along with (2.1) present the static plane symmetric solution of the 
of the field equations of Sen and D unn’s scalar-tensor theory obtained by 
Singh [9].

(ii) If kx =  yé5 =  k6 — krj =  o, in view of (3.3), (3.4) and (i), we have

k j k i =  ■— — , so that the corresponding solution is obtained as 
4

(3.6) A =  (k1 x 1Jr , C =  D — (kx x 1Jr k2) , B =  o.

Thus the metric (2.1), together with (3.6) describes an empty space-time discus
sed by Taub [10].

An analysis of the general solution given by (3.3) and (3.4) shows that 
they represent logrithmically divergent gravitational fields, and as x 1 -> 00, 
L , B , C , D and h all tend to 00. Moreover the solution has a singularity 
at x 1 =  — k2/kx. Also when kx — o, the gravitational field becomes singular. 
However we make a comparative study of the singular behaviour of the 
solutions obtained above for the cases (i) and(ii). Thus for the solutions of 
the field equations of the scalar tensor theory expressed by (3.5 a, b), we find 
that the Kretschman curvature invariant has the form:

(3-7) S =  Rijn R m  =  k\ e.4L 3 / 4 ~f~ 8 k\ —■ 2 kx ka
(kx x i +  k2y

It immediately follows from (3.7) that there is no intrinsic singularity when 
kx =  o, but as x 1 — ^2/^1 > S —> 00, indicating an intrinsic singularity. 
Hence the static plane symmetric solution of the scalar tensor theory charac-
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therized by (2.1) and (3.5 a, b) has the only intrinsic singularity located at 
x 1 =  •— yè2//è x . On the other hand, the Kretschman scalar for the T aub’s empty 
solutions given by (2.1) and (3.6) is obtained as

(3 -8) S  =

which reveals that the solution has an intrinsic singularity at x 1 =  — ■ k%lkx . 

Thus a comparison of the expressions for S in (3.7) and (3.8) points out that 
the singular structure of the static plane symmetric solution of D unn’s scalar- 
tensor theory of gravitation has the same feature as that of the vacuum field 
discussed by Taub [10].

4. A  NON-STATIC SOLUTION OF ( i . l )  AND (1.2)

Consider a Riemanian space-time described by the metric

(4.1) d s2 =  (dt2 — d r 2 —  r2 dcp2 — E2 d*2) ,

where r  , <p , s  are cylindrical polar coordinates and u and E are functions of 
time t alone.

By a straightforward calculation we find the non vanishing components 
of the Einstein tensor for the metric (4.1) to have the following values:

(4.2) Gu -  (I lr2) G22 =  (Ë/E +  M) , G33 =± -  E2 (2 Èû/E  -  M) ,

G44 =  2 (ü *— ü2) — M ,

where M =  2 ü-\- w2 +  2 EÛ/E. Here and in what follows an overhead dot 
denotes differentiation with regard to t, r  , 9 , z  and t correspond x 1, x2, x 3 
and x 4 respectively.

Taking the scalar field X as a function of t only and substituting the values 
of G ij from (4.2) and using (2.5) the field equations (1.1) and (1.2) after a little 
simplification are finally given by

(4.3) Ë +  2 Èû — o , ü -f 2 ù2-\~ Èw/E =  o , 2 ü +  u2 — \  A2 =  o ,

li T~ 2hù +  hÈjE — o .

The equations (4.3) on integration yield

(4 .4) E =  h =  (cslc3) u , ^ + «  =  (2 +  c1lcò(ctVr 1 t + c à ,

where , and c4 are constants of integration and

(4.5) 3 c\ +  2 c\ 2̂ =  ~  \  c\ > *2 =  =5* O , fi. =  ^  O.
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From (4.4) and (4.5) it is obvious that the scalar function h will be real if 
(*i/*a) <  — 3/2 , C2 >  o.

If =  o, then h =  o. In this particular case we have cjc2 =  — 3/2 
and consequently

(4-6) E =  e -* »  , e“12 =  * {et F '  t + c j .

The metric (4.1) with E and u given by (4.6) describes a non-static empty 
space-time discussed by Bera [11 ].

Thus (4.1) and (4.4) along with (4.5) constitute a non-static solution of 
the field equation of the scalar-tensor theory proposed by Dunn.

Remark. It is to be remarked here that the metric (4.1) is plane-symme
tric. It admits the motion x =  x-\-kx , ÿ = y Jt-k2 , z — z-\~k3 where kx , k3 , kz 
are constants. Further it admits rotation about the z axis. Thus the group 
of motions is of at least four parameters.
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