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Meccanica. — 7/ermodynamics of Elastic-Plastic Materials ©.
Nota® di BerNarD D. CorLeEmMan e Davip R. OWEN, presentata
dal Socio Straniero C. TRUESDELL.

RIASSUNTO. — Si mettono in evidenza le restrizioni imposte dalle leggi della termodi-
namica alle equazioni costitutive che descrivono materiali elasto—plastici perfetti in defor-
mazioni unidimensionali. Queste restrizioni sono determinate, senza ’ausilio dei concetti di
entropia o energia libera, mediante formulazioni della prima e della seconda legge della termo-
dinamica che involvono solo le seguenti quantith: temperatura, deformazione elastica, defor-
mazione plastica, modulo di elasticith, deformazione che corrisponde al cedimento, calore
latente di elasticitd, calore latente di plasticitd, e capacita termica.

1. PREFACE

We have recently proposed and explored an approach to thermodynamics
in which the Second Law takes the form of a cyclic inequality, and the exi-
stence of entropy as a function of state is deduced, rather than assumed *®.
When applied to several classes of materials, e.g. elastic and viscous materials,
materials with internal state variables, and materials with fading memory,
our new formulation of thermodynamics yields restrictions on the constitutive
relations for the stress, temperature, and heat flux agreeing with those obtained
in treatments ®® which start with a differentiable entropy function and
employ the Clausius-Duhem inequality. The new formulation has two ad-
vantages: (I) It permits one to determine the class of entropy functions com-
patible with given constitutive relations for stress, temperature, and heat
flux. (IT) In principle, it permits one to find thermodynamical restrictions
on response functions which give experimentally observable quantities, without
ever mentioning entropy or free energy. It is this second aspect of the new
approach which we shall attempt to illustrate here through a brief discussion
of the thermodynamics of a class of elastic-plastic materials.

(*) The research reported here was supported by the U.S. National Science Foundation
through Grant No. MCS75-09453 Ao1 to Carnegie-Mellon University.

(*¥*) Pervenuta all’Accademia il 28 luglio 1976.
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2. STATEMENT OF THE PROBLEM

A unidimensional perfect elastic-plastic element is specified when five
real-valued material functions are given; two of these, the modulus p. and the
(absolute) yield strain o are positive functions of just the temperature, while
three, the Jatent elastic heat A,, the latent plastic heat A, and the keat capacity
kg are initially taken to be functions of the elastic strain, the plastic strain,
and the temperature. We assume here that the temperature 6 can vary
over an open interval ]0;, ®,] with o < 0, < 0, < oco, that the elastic
strain A, is a real number of magnitude not exceeding the absolute yield
strain « (0), and that the plastic strain A, is a real number. The elements
(Ae )2y, 6) of the set

(2.1) zz{@e,xp,e)l|xe;ga<e>,@1<e< ®,, — 0o < A,<oo}

are the stafes of the specified perfect elastic-plastic element. We assume «
and @ are twice continuously differentiable on ]0,,®,[ and that A,, A,,
and 4y are continuously differentiable on 2.

An oriented curve I' lying in Z< R® is here called an adwmissible
path if it has a piecewise continuously differentiable parameterization
e ()M (),8(): 0,4 =X (with #>0) whose domain [0, #] contains
a finite number of subintervals I; (which we allow to be single points) such
that for each 7 in the interior of U x 1z ‘

(2.23) i (1) = o,
whereas for each = in the interior of the complement of (), I;
(2.2b) A (Dhp(r) >0  and |2 ()| =« (6 (1)

The points (A, (0),2,(0), 0 (0)) and (A, (), 7, (2), 0 () are called, respec-
tively, the snitial and final points of I'. If an oriented curve I' obeying these
conditions is a closed curve, it is referred to as a closed admissible path.
The set X of states is clearly arcwise connected. In addition, as the foll-
owing easily proved theorem asserts, X is ‘‘ admissibly connected .

THEOREM 1. For each pair of states (3,23, 6™, 0%, Xf), 0P, there is an
admissible path with initial point MNP, 25, 00 and final point 0P, 22, 6@),

If one notes that for a perfect elastic-plastic element the rate of working
is ph, (0, + )\p), and the rate of addition of heat is A, A, + A, )'\1, + 44 8, then
it becomes clear that the laws of thermodynamics require that the following
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two assertions be true

1) For each closed admissible path T,

e (IO ) T a OB+ A Ok, ) 02 it
r

+,ée(>\e,7\p,6)d6\)=o.

/

2) For each closed admissible path T,
(2.4) § (A&%Md)\e_;.i&!ﬁiéﬂ dxﬁkeL’e‘w@_de) <o.
r

It is convenient to introduce the material functions 4, and £, defined by

(25> éeo\e’?‘p,e):Ae()\e,)\p:e) ‘+‘V’(6>7‘e:
and
(2.6) Bp (Mo hp, 8) = Ay (X, 2y, 0) + 1 (B) 2, .

In terms of &, , £,, and 4y (each of which maps X into R), equation (2.3) can
be written:

(2.7) 4; (ée(%e,kp, 6) d\, + 2, e, 2y e)dx,,j?,ée (xe,x,,,e)de) =o0.
r

Our problem is that of finding the restrictions which 1) and 2) place on «, i,
ky, Ay, and A, or, @, u, 4, %, and £,.

3. PRINCIPAL RESULTS

THEOREM 2. [In order that the assertions 1) and 2) both hold, it is necessary
and sufficient that the functions o, , kg, ky, and k, obey items (i), (ii), and
(iii) below.

(i) For each state (\,, 1, 0),
(3.1) /ée_ (o Ny O) 4 322 0" (8) = & (x (6) , Ay, 6) 4§ o () B (),
and

(3:2) A, X, 0) = [u(®)— 0 O)] 2, ie A, ()%, 0 =— 0 p'H)

(7) In a paper to appear in the Archive for Rational Mechanics and Analysis, we shall
show how the present theory fits into the general framework introduced in reference 1 for
thermodynamical systems, and we shall give the proof of Theorem 2.
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(i) For each pair (A, ,0) in RX]0,, Oy,

(3.3 by (= (8) 2, 0) = Ay (2 (6) 2, ©)
and
(3.9 BHEEO N, = @ ©,%,0.

(iii) For eack polygon Q lying in RX]0O;, 6,
o f
(3-5) UJ 672 % (2 (6) , 2, O)dlpdﬂlﬁfe'lu(e)“(e) [d |
o )

where 3 is the closed polygonal curve bounding Q.

Item (i) of Theorem 2 concerns the elastic behavior of the perfect elastic-
plastic material and is easily derived from 1) and 2) by arguments employing
closed curves I" in X which are ““ elastic paths "’ in the sense that (2.2a) holds
for all 7 in [o,7], i.e. (JzIz = [0,#]. The conclusions (ii) and (iii), on the
other hand, appear to be new; their derivation from 1) and 2) employs closed
admissible paths I' on which ‘‘ yielding occurs "’ in the sense that the interior
of the set ([o,#] — (J: 1)) is not empty, and hence there is an open interval
on which (2.2b) holds.

In view of (2.6), equaton (3.4) tells us that the latent plastic heat A, is
related as follows to the heat capacity &9 and the “ yield stress”’ p (8) « (0):

56 g o) %, 0 = o ke @2y, O — 5 [ O x )]

By choosing for Q in (3.3) appropriate rectangles of narrow width, one
can easily show that (3.5) yields.

e

60 | ferne®., 00 <20

=
o

(1) (2)

a(01)  u(82) o (B2)
- 6

for each value of the plastic strain &, and each pair of temperatures 0V, 6@

in 10, , O[.

(85 The derivatives appearing on the left in (3.4) and (3.6) are computed with only the

second variable of %, and A, held fixed, e.g., 2 £p(@(9),2,,0) = 4 JSap (8), where, for
h value of X, , £ (8) = Ay (@ (6) , %y, 8). 0 de
each val 22 Py - 2 A ).
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In the special case in which there is a temperature inteval 16, @[
on which the vield stress w (8) « (0) is bounded above by a number S, and,
furthermore, #4, is given by a function £ of %, alone, the relation (3.7) yields

L @ (1)

- g g

for each value of »,.®
(9) From the experiments of W.S. FARREN and G. I. TAYLOR, « Proc. Roy. Soc. (Lon-
don)», A 107, 422-451 (1925), one may infer that for several metals the ratio £, (x(0),%,, 6)/

(6) u (8) is approximately 1/10 in ranges of 8 and %, in which the theory of perfect elastic-
plastic behavior is applicable.

6. — RENDICONTI 1976, vol. LXI, fasc. 12,



