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Meccanica. Lyapunov stability of the Euler column. Nota

di Mario Como e Antonio GRIMALDI ™9, presentata dal Corrisp.
E. GianGreco.

RI1ASSUNTO. -— Dopo aver dimostrato, per le travi elastiche caricate assialmente,
alcune proprieta di differenziabilitd seconda del funzionale energia in un opportuno spazio
delle configurazioni, viene dimostrata la validita del criterio della energia come condizione
sufficiente di stabilita secondo Lyapunov. .

Si stabilisce cosi il collegamento tra il carico critico euleriano e la definizione generale
di stabilita dinamica. Il lavoro si conclude con l’analisi del legame tra la norma del
disturbo iniziale e la norma del moto perturbato.

I. INTRODUCTION

In spite of the wide applications and the numerous practical results
achieved in the analysis of the buckling and post-buckling behaviour of
structures by the ‘““theory of elastic stability”, the real significance of the
predicted critical loads, as far as the dynamical (Lyapunov) definition of stability
is concerned, is not, yet very clear. The wide subject, methods and still
open problems in the theory of elastic stability of continuous bodies have
been analyzed in an article by Knops and Wilkes [1]; some attempts, not
completely satisfactory to prove the validity of static criteria of stability for
tridimensional elastic bodies, namely the energy criteria, are given in [2, 3, 4].

This paper provides the connection between the Lyapunov definition
of stability and the Euler critical load N, of an elastic column, initially
straight, and compressed by a centrally applied load N. Firstly, the space
of the admissible displacements of the bar, with a suitable norm, is defined
and a formulation of the energy criterion is given. It is then proven that
the rectilinear configurations of the bar are Lyapunov stable if N < N,.
The analysis 'is developed according to the monodimensional model of
the slender bar with the assumptions of axial inextensional deformations,
that is according to the classical theory of the ‘“ elastica”’. In order to pro-
vide a further examination of the Lyapunov stability of the rectilinear confi-
gurations of the column, a relation is also established, for N < N, between
the amplitude of the initial disturbance and the maximum amplitude of the
perturbed motion.

The results obtained prove, in the case of monodimensional continuous
systems, the validity of the energy criteria, if suitably formulated, as sufficient
conditions of Lyapunov stability, and confirm an old “ conjecture” of
Hellinger [s].

*) Perveﬁuta all’Accademia il 14 luglio 1976.
(**) Istituto di Tecnica delle Costruzioni, Facolta di Ingegneria, Piazzale Tecchio, Napoli
geg!
(Italia).
(***) Dipartimento di Strutture. Universitd della Calabria. Cosenza (Italia).
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2. THE SPACE OF THE CONFIGURATIONS OF THE BAR AND THE ENERGY
FUNCTIONAL

Let us consider the plane bending of an elastic slender column, initially
perfectly straight, and compressed by a centrally applied dead load N. Accord-
ing to common notations, the axial and transverse displacements will be
indicated by w (2) and v (¢) if z is the coordinate axis. The assumption of
inextensibility of the bar axis gives:

(1) 14wl +v2=1

where ( )’ =d( )/dz. The curvature of the bar axis is then

Z)Il

(2) P<3)="‘(—I,—_72)1—,2~

We assume that the kinematical boundary conditions of the bar are linear
and homogeneous in v or ¢/, namely that they correspond to zero displacements
or zero rotations ¢ = sin~'¢’ at the ends 2 =0 and 2 =/.

According to these assumptions the potential energy of the column under

the thrust N is

l
2

®  seo=tm[[ 20

o'2

+%<vmﬁ—1)] ds

0

where EI is the bending rigidity and

N/2

) r= Ty
Let us define the Hilbert space of all admissible configurations of the

bar as the space of all functions v (g),2€ [0,/], with square integrable

second derivatives "' (2) and satisfying the kinematical boundary conditions;

the scalar product is defined as

1

[X3

(s) [1,2,] = EI J v, v, dz

0

and the corresponding norm
‘ 1

© ot =5x ([ ovas) "

This space is commonly defined as an “‘ energy "’ Hilbert space Hy [6];
the norm (6) is called the ‘‘energy” norm and is proportional to the
bending energy of the beam, evaluated according to the linearized theory.
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By means of some classical results on Sobolev spaces [7] it is easy to
prove that the so defined displacements v (#) are continuous with their first
derivative and. satisfy the following inequalities

(7)  max |v(e) [ < Al max |v'(s) | < 4 ||| |||
z€efo,ll z€[0,l]
l 1

Hoii= ([ wae) <mtiont 1ei=([ o) <miion

The potential energy E (v) of the bar, given by (3), can be of course
defined in the set of the displacement functions v (¢) such that

®) v3(e) <B <1

that is, taking into account the second inequality (7), in the subset of Hy
defined by

®) ol =3=5".

Thus we will consider the functional E (v) defined in the spherical neigh-
borhood Ss of the origin

©) Ss={ve Ha: |||z ||| <3}

We can now formulate the following theorem, very useful for the analysis
of the Lyapunov stability of the bar:

THEOREM 1. The energy functional E (v) is at least twice Fréchet diffe-
rentiable at v = o in the space Hy.

Proof. We will indicate with

(10) D™ E (o ;0) = [ i ( B hen B )]a:O

do o

the 7 Gateaux (or weak) differential of E () at v, in the direction ». Thus
the first and the second Giteaux differentials of E (v) are

4

- T g 1y 1y

I 22U, U 27 VU 2\ 0V
(11) D“’E(vl;v>=—E1f —7 —7s _T—“W]

2 g L1t—o (1 —v 2 (1—uv)
d '’2 w200y (29 V)
1
(12) D®E (v;;v) = EI f = + ! : ! 753 +
s L1—o a —vd)

13 1rg

2 7 2,19
I __l(( v L u? )]dz
1

G —ay G
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For the second Fréchet differentiability of E (v) at v = o we have to prove
the following condition '

(13)  E@=E(@© +DWE(0;2) +4D®E(0;2) +o(|llz||P

where:

(14) lim O(HI'U”F) -0

oo N2 lF

and DM E (0;2),D®E (0;v) are continuous functionals, linear and qua-
dratic in v respectively.

According to (3), (11) and (12) we have
E{@=o0

(15) DWE(o;v)=o0
ID9E ;0| < (1 + 5 &) lllolle

On the other hand the mean value theorem gives

(16) E@=1iD®PE(@©;v) +1[DPE (az;2)—D®E (0;2)] =

=}DPE (0;2) +7(aw;v) o<a<rI.
Hence if we write
(17) m (V) = max |7/ |
zelo.l]
we get|
(18) l”z(w;v)I=%|D‘2’E(av;v);D‘2’E(o;v)|:

’ e i
=15 [l =) o+ e+
_%[(’(1—:;7)—/_ ‘)”.'”zrzo%if—z)sw]}dz <
= lemz [( I —Im2 B I) + 1512;2 T (1 im;2>3 +

.4_)\(-(1—*—17%2—)1,—2"1 +_(1*:”?;2)—3/2)]
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Thus

(19) lim 172OZio)|

= 0.
lilelli>o 2 ||

The third inequality (15), which implies the continuity of D® E (0 ; v),
together with (19), prove the second Fréchet differentiability of E (v) at v=0. []

We remark also that the Fréchet differentiability of E () at v = o implies,
of course, the continuity of E (7) at v = o.

3. LYAPUNOV STABILITY OF THE RECTILINEAR CONFIGURATIONS
OF THE CENTRALLY LOADED BAR

If 9(2,2)( ) =d( )/d¢, defines the velocity field, the kinetic energy
of the bar is given by

(20) T@) =1} f wo? dz

where @ is the mass for unit length of the bar.

A generic state of motion of the bar (Z) will be considered as an ele-
ment of the Hilbert space

(21) Ha,, = Ha XL,
whose norm is defined as

v
v

The total potential energy functional Er is

(22)

)= llolll + 2T @)

(23) B ((5) =@ +1®

and is defined in the subset Ss X L, in the space Hs . According to the previously
. vy . .
proven properties of E (v) we can state that also Er 7/) is a continuous and
. . . . v
Fréchet differentiable functional at (v) =o0.

Let us analyze now the stability of the rectilinear configuration C, .of
the bar. According to the Lyapunov definition, the equilibrium configuration

of the bar is stable if
f#© u (0) u (?)
e vezomzo: (()en. | (/3) ()

l<8)=_>

|<e Yt > o
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that is, in brief, all the motions that start in the neighborhood of C,, according
to the norm of the space H,, , remain always near C,.

After this preliminary definition let us consider the first energy criterion,
that is the extension to continuous conservative systems of the Lagrange-
Dirichlet theorem.

Namely we want to prove that the following minimum condition

(25) Jp>o0: infE(@ >0 Vpio<oe<y
3S,

where

(26) S, = {ve Ha: ||| v ||| = ¢}

implies Lyapunov stability at the rectilinear configuration C, of the bar.

The proof of this statement follows very easily if we take Eg (Z Eg)
as a Lyapunov functional and we take into account the continuity of E (v)
at v = o.

Condition (25) represents therefore a sufficient condition of Lyapunov
stability. Let us now formulate the energy criterion of stability that involves
the second differential of E (v) and that corresponds to the most usual for-
mulation of the so called energy criterion.

THEOREM 2. T/e rectilinear configurations Cqy of the centrally loaded bar
are Lyapunov stable if the second differential of ¥ (v) at Cq is suck that

@) .
(27) @ = min __])__E_(_O;_v) >~ o.
vera—(o}  |llZ]ll
The statement of Theorem 2 corvesponds to saying that the rectilinear confi-
gurations of the bar are Lyapunov stable for N < N, if N, represents the Euler
(buckling) load.

Proof. At first taking into account the expression of D® E (0;v)
4 '
(28) D®E (o;v) = EI { (v”2 — % z/’z) dz
]

(X}

it is easy to prove the existence, by means of the Sobolev ‘‘ embedding
theorem, of a displacement v (¢) in the space H, at which the ratio
D®E (o;9)/]||v || attains its minimum. If this minimum @ is positive
the equ111br1um is Lyapunov stable. In fact, because E (v) is twice Fréchet
differentiable, we have

(209)  E@=1DPE(©;2) +o(llz]lP
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taking into account the equilibrium of the rectilinear configuration of the

bar. Now if we indicate by v the displacements with |||z ||| = 1, we can also
write:
.
G E@=llolF|[; D" e+ 2P >
o(lllz [I» |
> ot [o— Lo dlelDL].
: o T
Now because

2
31 Ve > o0 Jo>o:|lizlli<e=| —r—e— | <€
D e >0 floll < pm| 2l 12

if we take ¢ such that @ — e >0 we have -
(32) Fe>o:o<||lv]|ll <e=E@® >(@—e) |||v]lf >0

and, because of (23), the statement of the theorem is proven. []
Now it is well known that the critical load N, is the smallest value of A

that gives o = o, i.e. from eq. (28)
!

f v'%dz

0

(33)

= max

1
A veH,—{0} ! '
f v''%dz

0
Therefore for 0 <A <}, it is 1 = ® >0 and we have Lyapunov stability.
2 EI
22

For instance if the column has both hinged ends for N < N, =
the equilibrium configuration is Lyapunov stable.

4. CONNECTION BETWEEN THE NORM OF THE INITIAL DISTURBANCE
AND THE NORM OF THE PERTURBED MOTION -

In order to characterize more accurately the meaning of the stability
of the rectilinear configuration of the bar for A<}, let us pass on to examine
the connection between the amplitude of the initial disturbance and the
maximum amplitude, in the sense of the norm in H, , of the disturbed motion
of the bar.

It is at first useful to evaluate the constants of the inequalities (7); for
instance if the column has one end built in and the other free, we have

J 1/2 / 1/2
Ke=/ (_ET) K= (‘ET)

"

/ 1/2 / 1/2

3/2 — 1/2 .
Ks=1 (EI) K=/ (EI)
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Inequalities (7), together with the properties of differentiability of the
potential energy E (v) of the bar, enable to establish upper and lower bounds

on the total energy E, (Z . In fact taking into account the definition (32)

of the critical load 2, and eqgs (17), (18), (33), we get the following lower
bound on E (v):

(34) E(ﬂ)=%D‘2’E(o;v)—l—r2 (o 5 v) >

/

= Lol (1 — 1) +rGoio =

1

A A I ’ m’
— 2 —_— - . -
> 21l {I Py . 2 [ (1 — ) L+ (1 —m2yl ]}

An upper bound to E (v) can be directly derived from the expression (3)
of the potential energy:

=

(35) E@ <o llolP—r
Thus we have
6 lelr (i — i) SE@ =l
where
I T Y R S e |

The total energy E, ((Z)) satisfies then the following inequality:
v
7'} 1

’ . v (o .
Let now the beam be subjected, at # = 0, to a disturbance (v E )) with:

o)
v (0)
v (0)
we have also from (7) (7") (17) and (39):

S

@® llolir(s—2rom) +r@<u((3) =5 (3) [+

<3

(39)

(40) e (0) < - B
and
1 || (z @) |F I I 3
(41) 2 || (v (o)) 1 —m? (0) =3 A
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The inequality (38) gives then the condition

‘L32

(42) @ (1— 2o ) = —2

=g

which represents a bound on the motion consequent to the initial disturbance.

1 A

A
1" xc f(mo)

50—
40
30
20~

10

Fig. 1.
In fact if F (2, A) is the function:

(43) Fon ) =t (1= 2/ ()

let, for every value of AA,,mq = 74 (A) be the value of = that gives the
maximum value F,,, of F (m,2). When »m <m, the function F (m , 1) is
positive and therefore if the initial disturbance is such that

(44)
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v ()
20

(45) m (2) < my

we deduce that the consequent motion ( ) satisfies the conditions

LSO @) =1~ f () > 0.

The inequalities (38) and (43) then give the following simple bounds on
the energy norm of v (#):

32 I

CON e @ llF < -
I_EI 3 I—__X:f(mto

and on the kinetic energy T (2):

8
2 1———[—82 '

EI

47) Te@® <

In eq. (46) when A approaches the critical value A,, the term

A . . .
1/ (I — vi (mo)) diverges and the bound on the amplitude of the distur-
bed motion fails. The fig. 1 gives the numerical values of the factor

1/ (I - %f (mo)), as function of A/A,.
(4

We remark that the inequality (46) provides only an upper bound but not
necessarily the least upper bound on the disturbed motions.
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