ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GIAMPAOLO MENICHETTI

Su una congettura di I. Kaplansky relativa alle algebre con divisione, tridimensionali sopra un campo finito

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **61** (1976), n.1-2, p. 15–19. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_61_1-2_15_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Algebra. — Su una congettura di I. Kaplansky relativa alle algebre con divisione, tridimensionali sopra un campo finito (*). Nota (**) di Giampaolo Menichetti, presentata dal Socio G. Zappa.

SUMMARY. — We give here a sketch of the proof of the following Kaplansky conjecture: any three-dimensional division algebra over a finite field is associative or a twisted field. The detailed proof will appear in a forthcoming paper.

I primi importanti esempi di algebre con divisione⁽¹⁾, tridimensionali sopra un campo finito K = GF(q) $(q = p^h \ge 3$, p primo), sono stati dati da L. E. Dickson nel 1905 (cfr. [8]). Successivamente altri Autori hanno studiato classi di algebre, \mathscr{A} , di questo tipo. Particolarmente interessante, anche perché non limitata alla sola dimensione tre, è la classe dei cosiddetti twisted fields, scoperta da A. A. Albert e poi ampliata dallo stesso Autore (cfr. [1], [2], [3] e [4]).

In una precedente Nota (cfr. [12]) avevo determinato la struttura di tutte le possibili algebre con divisione \mathscr{A} (dim_K $\mathscr{A}=3$), fornendo indirettamente una classificazione del loro insieme. In particolare nel caso q=p=3m+1 – che, per esemplificare, avevo esaminato nei dettagli – il numero delle algebre non associative \mathscr{A} risultava essere $(p^3-p^2+p-10)/3$.

I. Kaplansky, in un recente lavoro (cfr. [11]), ha congetturato la seguente

PROPOSIZIONE A. Un'algebra con divisione di dimensione tre su un campo finito, K, o è associativa oppure è un twisted field.

Nello stesso articolo l'Autore determina il numero, v, dei twisted fields di dimensione tre su K, trovando che esso è dato da

(I)
$$v = \begin{cases} (q^3 - q^2 + q - 10)/3, & \text{se } q \equiv 1 \pmod{3}, \\ (q^3 - q^2 + q - 6)/3, & \text{se } q \equiv 1 \pmod{3}. \end{cases}$$

Se q = p = 3 m + 1, allora (1) coincide col numero delle algebre non associative \mathcal{A} , determinato in [12]; ciò che, in tale ipotesi, dimostra la Proposizione A. Di questo e del contenuto della sua Nota mi aveva gentilmente dato notizia il Prof. Kaplansky prima ancora che essa fosse pubblicata.

Utilizzando essenzialmente alcuni risultati acquisiti in [12], ho dimostrato la Proposizione A provando che la (1) dà il numero delle algebre con divisione $\mathscr A$ non associative, di dimensione tre sopra K = GF(q), qualunque sia q.

^(*) Lavoro eseguito nell'ambito dell'attività del G.N.S.A.G.A. del C.N.R. (Sezione n. 4).

^(**) Pervenuta all'Accademia il 20 luglio 1976.

⁽¹⁾ L'espressione « algebra con divisione » è usata qui nell'accezione di « algebra con unità, priva di divisori dello zero ».

Questa Nota consiste in una esposizione sintetica del procedimento che in ciò ho seguito; le dimostrazioni saranno date in una Nota successiva.

Sia K₃ il campo di rango tre su K. Nel seguito considero prefissati un polinomio

(2)
$$f(\xi) = \sum_{i=0}^{2} e_{i} \xi^{i} - \xi^{3}$$
, $e_{i} \in K$,

irriducibile in K [ξ] ed una sua radice $v \in K_3 - K$. Posto

$$F = \begin{pmatrix} 0 & 0 & e_0 \\ I & 0 & e_1 \\ 0 & I & e_2 \end{pmatrix} \in GL(3, K),$$

per ogni $k = \sum_{i=0}^{2} x_i v^i \in K_3$ $(x_i \in K)$ è definita la matrice

(3)
$$F(k) = \sum_{i=0}^{2} x_i F^i,$$

della quale

$$\det \left(\mathbf{F}\left(k\right) - t\mathbf{I} \right) = \sum_{0}^{2}i\left(-\mathbf{I}\right) ^{i}\sigma_{3-i}\left(\mathbf{F}\left(k\right) \right) t^{i} - t^{3}$$

indica il polinomio caratteristico. Inoltre

(4) 1.i.
$$[v, k]_K$$

esprime la seguente condizione: gli elementi 1, v e

$$\varphi(v, k) = (v + k) (\sigma_1(F(k)) - k) - \sigma_2(F(k))$$

di K₃ sono linearmente indipendenti rispetto a K.

Fissato $k \in K_3$ — K che soddisfa la (4), indico con $\mathscr{A}(k)$ l'algebra, di dimensione tre su K, le cui costanti di struttura, $c_{ij}^r = c_{ij}^r(k)$, relative ad una

base prefissata
$$\mathbf{U}=\{u_0$$
 , u_1 , $u_2\}$ $(u_i\,u_j=\sum_{0}^2 c_{ij}^r\,u_r)$ sono

$$\begin{split} c_{0i}^r &= c_{i0}^r = \delta_i^{r} \,\,^{(2)}, \qquad c_{11}^0 = c_{11}^1 = 0 \;, \qquad c_{11}^2 = 1 \;, \\ c_{21}^r &= (-1)^r \,\sigma_{3-r} \left(\mathbf{F} \left(k \right) \right) \;, \qquad c_{12}^r = e_r \;, \\ c_{22}^0 &= e_2 \,\sigma_3 \left(\mathbf{F} \left(k \right) \right) + e_0 \,\sigma_1 \left(\mathbf{F} \left(k \right) \right) - \sigma_2 \left(\mathbf{F} \left(v k \right) \right) \;, \\ c_{22}^1 &= -\sigma_3 \left(\mathbf{F} \left(v + k \right) \right) \;, \qquad c_{22}^2 = e_2 \,\sigma_1 \left(\mathbf{F} \left(k \right) \right) - \sigma_1 \left(\mathbf{F} \left(v k \right) \right). \end{split}$$

Le seguenti Proposizioni B, C e D sintetizzano alcuni risultati acquisiti in [12].

(2) Al solito
$$\delta_i^i = 1$$
 e $\delta_i^r = 0$ per $r \neq i$.

PROPOSIZIONE B. $\mathcal{A}(k)$ è un'algebra con divisione qualunque sia k che soddisfa la (4).

In particolare:

- a) $\mathcal{A}(k)$ è associativa se e solo se $k = v^{q^3}$, s = 1, 2;
- b) $\mathcal{A}(k)$ è commutativa e non associativa se e solo se $p \neq 2$ e k = v.

PROPOSIZIONE C. Sia $\mathcal{A}(k)$ non associativa. $\mathcal{A}(k')$ è isomorfa ad $\mathcal{A}(k)$ se e solo se esistono $i \in \{0, 1, 2\}$ e $\lambda_i \in K$ (con $(\lambda_1, \lambda_2) \neq (0, 0)$) tali che

$$v = \lambda_0 + \lambda_1 v^{q^i} + \lambda_2 \varphi^{q^i}(v, k),$$

 $k' = \lambda_0 + \lambda_1 k^{q^i} + \lambda_2 \varphi^{q^i}(k, v)$ (3).

PROPOSIZIONE D. Ogni algebra con divisione, \mathcal{A} , di dimensione tre su K, è isomorfa ad un'algebra $\mathcal{A}(k)$.

La condizione espressa dalla Proposizione C mal si presta, da sola, al computo delle algebre $\mathscr{A}(k)$ a due a due non isomorfe; si rende dunque necessario un più approfondito esame di questo punto. La seguente proposizione risponde a tale esigenza.

PROPOSIZIONE E. Sia $k \neq v^{q^8}$, s=1, 2, un elemento di K_3 — K prefissato in modo che (4) sia soddisfatta. Il sistema lineare

(5)
$$v = y_0 + y_1 v^{q^i} + y_2 \varphi^{q^i} (v, k) k = y_0 + y_1 k^{q^i} + y_2 \varphi^{q^i} (k, v)$$

ha un'unica soluzione $(y_0, y_1, y_2) \in K^3$ o solamente per i = 0 (in corrispondenza del quale è necessariamente $y_0 = y_2 = 0$, $y_1 = 1$) oppure qualunque sia $i \in \{0, 1, 2\}$. Quest'ultima circostanza poi si verifica se e solo se

$$\sigma_1(\mathbf{F}(k)) = \sigma_1(\mathbf{F}(v)) = e_2 \qquad e \qquad \sigma_2(\mathbf{F}(k)) = \sigma_2(\mathbf{F}(v)) = -e_1 \,.$$

È facile dimostare che l'insieme

$$\mathbf{A} = \{k \in \mathbf{K_3} - \mathbf{K} : \text{ l.i. } [v , k]_{\mathbf{K}}, k \neq v^{q^s}, s = \mathbf{I}, \mathbf{2}\},$$

degli elementi, k, in corrispondenza dei quali $\mathscr{A}(k)$ è un'algebra con divisione non associativa, ha ordine $q^3 - q^2 - q - 2$.

In virtù della Proposizione E, gli elementi di A si ripartiscono in due classi disgiunte, A_1 e A_2 .

 A_1 è l'insieme degli elementi di A per cui il sistema lineare (5) ha una soluzione unicamente per i = 0;

$$\mathbf{A_2} = \{\,k \in \mathbf{A}\colon\, \mathbf{\sigma_1}\,(\mathbf{F}\,(k)) = \mathbf{e_2}\,\,,\,\,\mathbf{\sigma_2}\,(\mathbf{F}\,(k)) = -\mathbf{e_1}\,\}$$

consiste di quegli elementi $k \in A$ per cui il sistema (5) è risolubile qualunque sia $i \in \{0, 1, 2\}$.

(3)
$$\varphi(k, v) = (k + v) (\sigma_1(F(v)) - v) - \sigma_2(F(v)).$$

Dunque se

$$\left| \mathbf{A}_{2} \right| = n \,,$$

allora

(7)
$$|A_1| = q^3 - q^2 - q - 2 - n$$

e, quindi, il numero, ν' , delle algebre $\mathscr{A}(k)$ (ovvero, cfr. Proposizione D, di tutte le algebre \mathscr{A}) a due a due non isomorfe è

(8)
$$v' = |A_1|/3 + |A_2|.$$

Dopo queste osservazioni il computo di v' è ricondotto a quello di n.

Per semplificare alcuni calcoli conviene supporre $e_2 = 0$ ed $e_1 \neq 0$ (cfr. (2)); ciò che, si dimostra, non è limitativo.

Se $k = \sum_{i=0}^{2} x_i v^i$, allora le condizioni l.i. $[v, k]_K$, $\sigma_1(F(k)) = 0$ e $\sigma_2(F(k)) = -e_1$ si esplicitano in

$$(x_0 + e_1 x_2) x_2 - (x_1 + 1) x_1 \neq 0,$$

 $3 x_0 + 2 e_1 x_2 = 0,$
 $3 x_0^2 + 4 e_1 x_0 x_2 - e_1 x_1^2 - 3 e_0 x_1 x_2 + e_1^2 x_2^2 = -e_1$

rispettivamente e, per definizione, n è il numero delle soluzioni del loro sistema, tolte le due che corrispondono ai valori v^q e v^{q^2} di k.

A conti fatti risulta

$$n = \begin{cases} q - 4, & \text{se } q \equiv 1 \pmod{3}, \\ q - 2, & \text{se } q \not\equiv 1 \pmod{3}. \end{cases}$$

Di qui e dalle (6), (7) e (8) segue v' = v (cfr. (1)).

Si osservi, per concludere, che tutti i possibili piani proiettivi sopra le algebre con divisione \mathscr{A} (dim $_K\mathscr{A}=3$) – del tipo V secondo la classificazione di Lenz-Barlotti (cfr. [7]) – sono completamente determinati dalla Proposizione A (cfr. anche [5] e [6]).

BIBLIOGRAFIA

- [I] A. A. ALBERT (1952) On nonassociative division algebras, «Trans. Amer. Math. Soc. », 72, 296-309.
- [2] A. A. Albert (1958) Finite noncommutative division algebras, & Proc. Amer. Math. Soc. 1, 9, 928-932.
- [3] A. A. Albert (1960) Finite division algebras and finite planes, « Proc. Symp. Appl. Math. », 10, 53-70.
- [4] A. A. Albert (1961) Generalized twisted fields, « Pacif. J. Math. », 11, 1-8.
- [5] A. A. Albert (1961) Isotopy for generalized twisted fields, «An. Acad. Brasil. Ci.», 33, 265-275.

- [6] A. A. Albert (1963) On the collineation groups associated with twisted fields, Calcutta Math. Soc. Golden Jubilee Commemoration volume (1958/59), part II, 485-497.
- [7] P. DEMBOWSKI (1968) Finite geometries, « Ergebn. der Mathem. und ihrer Grenzg. », Band 44, Springer-Verlag.
- [8] L. E. DICKSON (1905) On finite algebras, « Nachr. kgl. Ges. Wiss. », Göttingen, 358-393.
- [9] L. E. DICKSON (1906) Linear algebras in which division is always uniquely possible, «Trans. Amer. Math. Soc. », 7, 370–390.
- [10] I. KAPLANSKY (1976) Three-dimensional division algebras, I, « J. Algebra », 40, 384-391.
- [II] I. KAPLANSKY (1975) Three-dimensional division algebras, II, « Houston J. of Math. », 1, 63-79.
- [12] G. MENICHETTI (1973) Algebre tridimensionali su un campo di Galois, «Ann. Mat. Pura Appl. », 97 (4), 283-302.