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Meccanica dei continui. — Nonlocal effects on the stress distri-
bution in an elastic half-space. Nota di STAN CHIRITA, presentata )
dal Socio D. GraFrFI.

R1ASSUNTO. — In questa Nota si da una rappresentazione di tipo Galerkin nella teoria
di eldsticitd nonlocale e si studia il problema del semispazio.

1. In this paper we examine the stress distribution in the problem of
the nonlocal elastic half-space under arbitrary distributed surface tractions.
As a general rule, the components of the stress tensor are affected by nonlocal
effects. It is interesting to note that there is a case in which the stress distri-
bution is the same as in the classical elasticity. In all cases, the displacement
distribution is modified in nonlocal elasticity.

2. We recall the fundamental equations governing the linear theory
of homogeneous and isotropic nonlocal elastic solids. In this connection we
confine our attention to the equilibrium case, refer to rectangular cartesian
coordinates (%, #,,#%;) and we use the notation x = (x,, %, ,x3). In what
follows, unless otherwise specified, Latin subscripts are understood to range
over the integers (1, 2, 3), whereas Greek subscripts are confined to the range
(1, 2), and subscripts preceded by a comma denote differentiation with res-
pect to the corresponding cartesian coordinate.

Let V be the region occupied by an elastic solid, and let §V the boundary
surface of V. The basic equations of linear theory of nonlocal elasticity are

(2], [4]
+ the equilibrium equations
(® iy +fi=o0,

— the constitutive equations

(@) tiy=1eyn 3y + 2 pey; + f D=9 en ()8t (x—3) ey (] dy,
A%

— the geometrical equations

3) 2€ =ty + .

In these equations we used the following notations: #;-the components
of the stress tensor, x;the components of the displacement vector, f;-the
components of the body force vector, ¢;;-the components of the strain tensor,

(*) Nella seduta del 10 giugno 1976,
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A, p-the local elastic constants of the material, A’, p/-the nonlocal characte-
ristics of the material. To the equations (1)-(3) we adjoin the boundary
condition

@ tin;=1t, on 3V,

where 7; are components of the outward unit normal to 3V and % are prescribed
functions.

Substituting (2), (3) in (1) we obtain the displacement equations of equi-
librium in the linear theory of nonlocal elasticity

(s) pAz; -+ (N W) 2,05 +

+ -9% f N @ — ) 4,7 () 3i 4 0 (F — ) (1,5 (9) + 25,6 (WD dy + fi=o0.
v .

Let V be the entire space E;. According to the axiom of attenuating neigh-
borhoods, the nonlocal moduli 2, p" must die out fast with !x;— y; [ co.
Therefore, if we assume that [2], [5]

©® N(xi—yiD=nG(xi—yi) , W (xi—yi)=wmG(xi—» ],

A W = const.,
then

) G(|lx—y: ) Em="o.

Moreover, we suppose that #;(x) and G (|« |) are sufficiently smooth func-
tions. Accordingly, we may interchange the derivative and the integration
on the displacement vector in (5). In view of this fact and using the notations

¥ A<PE(l+zy-)<9+(h+2vq)fG(Ix—y!)<P(y)dy,

Eg

Lo =wo+m | GUr—r Do) dn

we derive for the displacement the following representation of the Galerkin
type
32

(© = AAD— P

A—L)o,,

where ®, satisfies the equation

(10) A ALD, = —/f,.
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As a particular case, when 4, = A, u, =y we obtain the classical repre-
sentation '

2

(11) =0t 20 A0 — () o 0,

where in this case ®, satisfies the equation

(1) wOH2WNL O ——f ; Le=g+[Glr—sDe() d.
Eg

It is not difficult to verify that the above representation indeed satisfies
the displacement equation (5).

3. Let V from now on be the open half-space (— co < #,,x; <oo;
0 << 00) so that 8V is the plane x; = 0. The boundary conditions (4)
take the form

(13) ta (O, %2, %3) = qu(Xa, %3) , 23 (0,2, x5 = o,

where ¢, (%, ;) are prescribed functions on x, = o, so that

f lq:: (x2 s xs) I dxz dxs <o,
Ey

We suppose that the half-space is occupied by an elastic medium with
nonlocal interactions. The nonlocal moduli A" and p’, are expected to change
very sharply as we move from the surface, #; = 0. to within the half-space.
According to the axiom of attenuating neighborhoods, they must die out fast
with |%;—y; | —oco. Thus, we assume [3]

(14) G(x—yD=9(x—y' D3t —y) , 2'=M,1) , ¥'= %,
We suppose that the body forces are absent. In order to solve the problem

of the half-space we assume @, = ¢,, ®; = 0, so that the representation (9)
becomes

] 2
(15) - ”¢=AA<PO=_%(A—L) Poe u3=-——a—£(A-——L) Po.p s
(16) A*ALg, =0, '

where we have used the notation

(1) MG, x) = 0k 20 (1w + Out 200 [ 9 (2 — 9D b (1,5
Eg

Ly G, #) = b () b [ 95—y Do () dy
Ey
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Corresponding to the representation (15) we have

fug = AL (A — 2 L) @0 855 + AAL (9,3 + 9p.0) —

*?
—2 oty 97 L(A—L) Po.o s
18) 2
tys = AAL@y s — 2 Sy 97 LA—L) o, ,
. o

52
33 = AL (A —2L) ‘Pp,p—ZWL(A—'IJ Po.p -
3

If we apply the Fourier transform with respect to #’ to equation (16),
considering x, as a parameter, we obtain

a72 2 2 .
~(19) (E"‘Eﬁ)‘d}'(@u=o , =8+,

where #(g,) is the Fourier transform of the function ¢, with respect to .
If we use the regularity condition for x,— oo, it is easy to see that the general
solution of (19) is

(20) F(9) = (Ay + By ) e,

where A, and B, are unknown constants.
Taking into account the relations [6]

g(‘?a,l) = [Ba’_' & (Au + By xl)] e—&a ;
(z1) F (Paar) = [—2E By + 2 (Ag+ Byap)] e ;
F (@aur) = [3E2 B — B3 (Ay + Bo)] e

from the boundary conditions (13) and the relations (18), (20) we deduce

B[R0 L) @

A wWE 20 F2p)E 2p 2p A+ 2p) €

G2 B, =GHWEA . Bi—iA, , A=A NF @D,
d p=u+wuF9)E .

Then, we obtain
F ) = (F@) + EF@) + G F @ n} ™,

F) =T s+ 2

(23) ,
[EF (q) + 7€ F (g,)] xl} e, =23
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Integral representations, in complex form, for the components of stress and
displacement now follow from (15), (18), (20), (23) with the aid of the inversion
of the Fourier transform.

As a final application we consider here the problem of a half-space subjec-
ted to a normal concentrated traction, applied in the origin of the coordinate
system. Thus,

(24) F@p=1 , Flg=o0 |, A, =By, =0 s Pp=o0.

With these special assumptions, from (18), (22) we deduce

F ::__I*[_X_ ﬁ]-gzl,
@ ieiw laine el

F(ty)=( +Ex) e,

(25) o
F(hy) =iz e,

A
At

Xy

[@%@?— 3

S+

Ftp) = { ] :, zk} e a3,

According to the relations [6]

27 R
_— i (;L = e_gxl
27 97, \ R ’
(26) Lgr _32; (L ‘ — ge—% .
27 a2 \ R ’

! I &z,
f;;f[ln(R+xl)]=?e o
R* =]+ x4 45 ,

from (25), ;3 we obtain

1 2 (1 x, P (I
m=——— )t )
2T Ox R) 2T 9% R)
(27)
APy ox; o \R /|’ i

as in the classical theory. As is apparent from (25),, since & = A (£), w=rp5),
the nonlocal effects are present in the components of the stress tensor. It
should be noted that in the particular case A=A, = the stresses
tx(f,2=2,3) in (25), coincide with the corresponding well-known results
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in ordinary elasticity theory. The integrals to which one is led in this case
are elementary and may be explicitly evaluated again by making use of (26).
However, the nonlocal effects are present in the displacement expressions

I 7\'}‘ 2p. —tz
F = | LT 4k 1,
(1) 21E ( "+ + »x.l) €
(28) . _
F Y= % [———_“‘ — ] _&1, =2, 3.
(#5) 2w 5i+g Ex| e J=2,3

For a given elastic material, we may determine #;(j, %4 = 2, 3) and #z; by
inverting the Fourier transform in (23),, (28).
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