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Equazioni differenziali ordinarie. — Zxistence and stability of
solutions for autonomous multivalued differential equations in Banach
space. Nota di Francesco S. De Brasi, presentata ® dal Socio
G. SANSONE.

RIASSUNTO. — Si dimostra un teorema di esistenza per il problema di Cauchy
% e F (x),x/0) = x3 in uno spazio di Banach riflessivo. Si suppone F a valori compatti con-
vessi, semicontinua superiormentc e y-Lipschitziana (y & la misura di non compattezza di
Hausdorff). 1l teorema ottenuto estende un risultato analogo recentemente enunciato da
Muhsinov [12] nel caso di uno spazio di Hilbert separabile. Inoltre, impiegando la nozione
di differenziale multivoco introdotta in [7], si dimostra per lo stesso problema un teorema
di stabilita,

1. The aim of this Note is to prove two results on the existence and
stability of solutions for autonomous multivalued differential equations

(1.1) ze F (x) x(0) =1z,

in a Banach space. Here F is a map from a reflexive Banach space Y to the
space K; (Y) consisting of all non void compact convex subsets of Y, and #
denotes the strong derivative of x.

In Section 2 an existence theorem for (1.1) is given. F is supposed to be
compact convex valued, upper semicontinuous (= u.s.c.) and y-Lipschitz (v is
the Hausdorff measure of noncompactness [14], [7]). For the proof we use,
in a modified and simplified version, certain results from [2], [3], [6], [15].
Further recent contributions ta the theory of multivalued differential equations
in infinite dimensional spaces can_;be found in [5], [12]. (For the single valued
case see [1], [4], [r1], [15]).

In Section 3 we use the notion of multivalued differential D of F (see [7])
to obtain a theorem on the asymptotic stability of the origin for (1.1), by
the first approximation method. This is accomplished supposing that, for
the first approximation of (r.1) # € D (x), there exists a Lyapunov functional
satisfying some natural conditions.

In conclusion we observe that some of the results of the paper (e.g. Theo-
rem 1) can be formulated also for nonautonomous multivalued differential
equations % € F (¢, x). k

2. In this section an existence theorem for (1.1) is proved. In the sequel
Y denotes a real reflexive Banach space, Y” its dual. We follow the termi-

nology of [10].

(*) Nella seduta del 10 giugno 1976.
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LEMMA 1 ([10], p. 88). Ifx:[0,T] =Y is (ay) of strong bounded varia-
tion, (ay) almost everywhere (= a.c.) weakly differentiable with derivative v,
then y is Bochner integrable. If x is also (as) weakly absolutely continuous then
it can be expressed as the indefinite integral of v,

x(t)=x0+fy(x)ds, te[o,T].

The following lemma is known. Nevertheless the proof is included to
make the paper self contained. '

LEMMA 2. Let the sequence {x,},
t
xy () = %o +fftn(s)ds> tefo,T],
(1}

(Zn strongly measurable) converge uniformly to the continuous function x. Let
|2, Ol <M a.e. in [0,T]. Then for almost all t€ [0,T],x possesses a strong
derivative % whick is Bockhner integrable and

t

(2.1) x(z‘)=xo—]—[i(s)ds, t€ o, T].

(]

Progf. The function x satisfies the hypotheses @, — @3 of Lemma 1; (a;)
is obvious, (a,) follows from a result of [13]. To check (@) let #* € Y™ and
consider the sequence {g,}, £, (5) = (", %, (s)) s€ [0, T]. By Pettis’ theorem
([10], p. 72) the functions g, are measurable. Furthermore {g,} is bounded in
L, [o, T] since a.e. we have |g,(s) | <[[2"|| |2, (&) || <[] #*||M. Moreover

the countable additivity of the integrals f &n (8) ds, E any measurable subset
E

of [0, T], is uniform with respect to 7. By a known result ([9], p. 292) {g,} is

weakly sequentially compact in L, [0, T] and there exist g € L, [0, T] and

subsequence {gyn} which converges weakly to g. This implies ([9], p. 291)

t t
im g ©ds= [g@ds,  relo,T]
. n—>00
Thus 0 o,
(x*, x (t)) = (x* s % + lim j*k(n) ® ds)
n—>o0
yields 0

(2", 2 () = (+°, %) + fg () ds, te o, T]

and (a,) is satisfied.
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A function x:[0,T] =Y, T >o0, defined by x(¢) = x, + (y (s) ds,

0
€ [0, T] (the integral in the sense of Bochner) and such that % (f) e F (x (2))
a.e. in [o,T] is called solution of (1.1).

The next lemma provides a sufficient condition in order for (1.1) have
a solution. Denote by K, (Y) the space of all non void compact convex sub-
sets of Y with Hausdorff metric 4 and let Uc Y be a non void and open
set. Among the hypotheses (i), (ii), (iii) on F: U — K, (Y) probably (iii) looks
as the less natural. However, as it will be seen later, (iii) is certainly satisfied
if F is supposed to be y-Lipschitz or, in particular, completely continuous.
Set S={xe Y:|x]| <1}

Recall that F:U — K, (Y) is said to be upper semicontinuous (in U)
if for every x€ U and ¢ > o there exists § > o such that F (x + %)< F (x) +
+eSif|| 2] < 3. Fissaid to be y-Lipschitz, with constant £ > o, if for every
non void bounded subset Ac U we have vy (F (A)) < £y (A).

The following lemma is a variant of some known results [2], [6]. Since
the proof which we present seems to be new and quite elementary, it is included.
For the integral of a multifunction we refer to [8]. For Pe K,(Y),| P|
stands for & (P, o).

LEMMA 3. Let Y be a reflexive Banach space. Suppose: (i) F: U — K, (Y),

= {xe Y:|lx — x|l <7} (r > 0), is upper semicontinuous, (i) | F ()] <

<M,(M >o0)xeU and, (iii) there exist Qe Ky (Y) and T > o such that

™™ <7 and xy+ () tcoF Q) c Q. Then (1. 1) has at least ome solution
defined on [o,T]. 10T

Proof. For any fixed integer » > 2 consider the partition of [0, T] by
means of the points #; = —;—T, i=0,1,,n Setl;=1[#,4), 0<i <

<n—2,1,,'= [t,4,,] and denote by X1, the characteristic function of I,.
Define #x,: [0, T] =Y by

£ 19 = 30,70 () = 7 (1) + f frds,te [t toal

G=o0,1, ", n— 1) where /' is a point in F (x,(%)). This deﬁnition is

meaningful since any point x, (;) is in U, being || x, (#;) — #, || g ZTM <7.
Thus if te [o, T], say #€ I;, we have

tht1

xn(t)—xo—l—z:ff"ds —!—ff“ds

=z, +f Lgofh" yan (s)] ds = x, + fx,, (s)-ds.
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The sequence {x,} is equicontinuous. Furthermore, for every ¢€ [0, T],
#n (£)€ Q. This is trivial for z€ [#,#4]. Suppose x, ()€ Q, z€ [, #]. Then,
for ¢t € [#,, th], we have

h—1 £ —
R R PR o g
h—1
erott | 3 Tl ) 4 L ()] <
1=0

By the Ascoli-Arzela theorem there exists a subsequence, which we denote
again by {x,}, which converges uniformly to a continuous function
xz:[0,T] -Y. By Lemma 2, # exists a.e. and (2.1) holds.

We claim that x is a solution of (1.1). To this end define

enifo,T] > Y, () = Z o (1) 11, (8-

Clearly z, —x uniformly. Let € (0,T) be a point such that % (#) exists.
Let € > 0. Suppose % > o and sufficiently small (if # << o the argument is
similar). We have otk t1h

2 (£ -+ B) — 2, (2) =Jyz,, s) dsefF(zn (s)) ds.

Since'F is uniformly u.s.c. in the compact set Q and #, —> x uniformly in [0, T1,

(x, () , x (£) € Q) there exists an integer # > 1 such that F (g, (s))< F (x ) +
+ €S, if » > &, for all s€ [0, T]. Thus

t+h
xn(t+/z)—xn(z‘)efF('x(s))ds + %eS n=>=rk
t

from which, letting 7 — oo, hence dividing by %, we obtain

t+h

[x ¢+ &) —x (D)Jh € %IF (x () ds + <S.

Since s = F (x (5)) is u.s.c. at s = # there exists %, > o such that for every
selt,t+ 4], o <h <hy, we have F(x(s))< F(x(?)) +¢S. Therefore

t+h

EC+a—x@lhe %fF(x(t)) ds + 25 = F(x(t) + 2 ¢S,

F (x (#)) being compact and convex. Letting # — 0 we obtain # @®eF@x@) +
+ 2 ¢S, which completes the proof.
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THEOREM 1. Let Y be a reflexive Banack space. Let hypotheses (i), (ii)
of Lemma 3 be satisfied. Suppose F is y-Lipschitz with constant b = o. Let
T > 0 be such that kT <1 and TM <7r. Then (1.1) has at least one solution
defined on [o,T].

Proof. It suffices to apply Lemma 3 since, under the stated hypotheses,
the y-Lipschitz function F satisfies hypothesis (iii) of Lemma 3, (see [15]).

In [12] Muhsinov states, without proof, a similar theoren: in a separable
Hilbert space.

COROLLARY 1. Let Y be a reflexive Banach space. Suppose: (i) F:Y —
Ko (Y) is upper semicontinuous, (ii) |F(x)|| <M, xe€ Y and, (iii) F is
Y-Lipschitz with constant k >o. Then (1.1) has at least ome solution
z: [0, 00] =Y defined all over [0, o).

Proof. Let T > o be such that £#T < 1. Fix » >MT. By Theorem 1,
(1.1) has at least one solution x which is defined on [0, T]. To continue this
solution on [T,2T], [2T,37T],--- one has to take (1.1), replace x, by
x(T),x(2T),--+ and apply Theorem 1.

3. The aim of this section is to prove a criterion for the asymptotic sta-
bility of the zero solution of (1.1) using the direct method of Lyapunov.

Denote by B (Y) (resp. B (V")) the set of all non void bounded subsets
of Y (resp. Y*). For Ae B(Y), o B (Y*) define

{o,A)f =sup{(f,a):fe ¢,ac A}
{o,A)- = inf{(f,a):fe ¢,ac A}

If ¢, A are singleton (¢, A}t = (p,A) = (cp yA)

A nonnegative function V:Y — [o, oo) is called a Lyapunov functional
if there exists 7 > o0 such that V and grad V are continuous in S, = {xreY:
lx]l <7} and, there exist constants «, B >o0 such that «||x|P <V (x) <
<Bl=|? xeS. |

Denote by & the Hausdorff distance in the space C, (Y) consisting of all
non void bounded closed and convex subsets of Y.

Let U be a (non void) open subset of Y. F:U — K, (Y) is said to be
differentiable [7] at xe U if there exists a map D,: Y —C,(Y) such that:
(a) D, is u:s.c., homogeneous i.e. D, () = D, (), # >0 y€Y and, (b) there

exists 3 > o such that & (F (x + %), F () +D,(#®) = o), when lz2] <3,
and hm o (h)/"/z | =o.

THEOREM' 2. Let (1.1) be given. Let Y be a reflexive Banack space. Let
F:Y > K, (Y), F(0) = o, satisfy the hypotheses of Corollary I and, moreover,
suppose that ¥ is differentiable at the origin with multivalued differential D.
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Let there exist a Lyapunov functional V such that

(3.1) (grad V() ,D ()}t <—aV (®),a >0 x€ S,
(3.2) llgrad V()| <éilx|l,6 >0 x€S,.

Then the origin is asymptotically stable for (1.1).

Progf. Since F is differentiable at the origin and F (0) = o, there exist
a bounded closed convex valued map D : Y —C, (Y) and a constant o < § < »
such that

(3-3) d(F@),D@E) =0, if [x]l<3,

and lim o (®)/|| #[| =o. Choose 3§ > o satisfying —a + & 3Ja < — a/2.
z—>0

Set o' (x) =o(x) +1|x|2 Since lim o' (x)/|| x|l = o there exists 0 < §; < 3

such that both (3.3) and F=0

b o (x) - a
hold for all ||x|| < 8,. From (3.3) and the definition of Hausdorff distance &
we have F(x)c D (x) +0o'(¥)S if ||x| < 3,. Let H>1 be such that
Bla)* < 8/K < §,/2.

Denote by x any solution of (1.1), defined for # > o, with initial value x,
satisfying || x, || < 3,;/K. By Corollary 1 there exists at least one such solution.
As long as x (¢) satisfies ||z (¥)|| < 3, we have a.e.

LV (e @) = lgrad V x (9) , £ (9)

< (grad V. (x (8)) , D (& (&) + ot (x (9) S)*
<—aV @ @) + ot (x (®) bl 2 ().

Thus, if x (¢) %o,

FVe@=—aeo+TED o

from which, using (3.4), we obtain
3.5) IV EE)<— LV @ 0)
3. 5 % ( —_ _2‘ X

a.e. and for all #>o0 such that x (!) 20 and [|x (¥ || < §,.
This inequality is trivially satisfied for all # such that x () = o since,
in this case, both members vanish. Furthermore it is easy to see that
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2]l < 8/K implies |z (@] <8 ,2=>0. Thus (3.5) yields V(x () <
.; .

<V (xy) exp (——— % z‘) and [z (O] < (—%—) [ 20| exp (——Z— l), t >0, which

completes the proof. ‘

Example. Let S (a,7) = {xe R*:||x—al| <r}. Consider the equation
in a neighborhood of the origin of R"

ie Fx), Fl@)=—x+3 (o %Hxll +r(x))

2
Il sin — if ¥~ 0. F has at the ori-

(EZ)

gin the multivalued differential D(x) = —x -+ S (o ) % f|x{|). Furthermore

where 7 (x) = o0 if x = 0, 7 () =

V()= {x,x),x€R" is a Lyapunov functional satisfying (3.2) and also
(3.1) for

(grad VG, D@ = sup 2 e, —# + L #l1x1): o <Nel <1} s— <.

Then Theorem 2 applies, i.e. the origin is asymptotically stable for the given
equation..
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