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Equazioni differenziali ordinarie. — Asymptotic behaviour of
perturbed nonlinear systems. Nota di M. Bastr e B. S. LarLi®,
presentata ®? dal Socio G. SANSONE.

R1AssUNTO. — Gli Autori stabiliscono alcune relazioni asintotiche tra le soluzioni dei

sistemi non perturbati

*) x'=f(, ), ('= dr/ds)
e quelle dei sistemi perturbati

**) V'=ft,y) +&t,y,Ty)

estendendo il concetto di equivalenza asintotica generalizzata di P. Talpalaru. Successi-
vamente stabiliscono un teorema di equivalenza asintotica generalizzata tra i sistemi (¥), (*¥%).

1. INTRODUCTION

Recently, Brauer [5], Brauer and Wong [9], Fennel and Proctor [4],
Hallam [6], Pachpatte [2], Talpalaru [3], and Marlin and Strubbe [1] among
others have obtained general results on asymptotic behaviour of solutions of
perturbed nonlinear systems. The purpose of this paper is to investigate these
problems further. We are mainly interested in establishing asymptotic rela-
tionship between the solutions of unperturbed systems

(1.1) x'=f(,x), (‘= d/d¥)
and those of the perturbed systems
(1.2) y=Ft 9 +gt,y,Ty).

Here x,y are elements of R? # and g are functions with values in R”. Let
I be the interval o < #<<co and D be a region in R”. We always assume that
feC[IxD,R"], that f,(¢,x) exists and is continuous on IxD, that
g€ C[I XD XD, R"], and that T is a continuous operator such that T maps
C[I,D] into C[I,D]. We use x(¢,%, %, to denote the solution of (1.1)
passing through x, at # = ¢, and y (¢, #,, ¥o) to denote the solution of (1.2)
passing through y, at # = #,. The symbol |-] will be used to denote any con-
venient vector norm in R”. It is known [8] that the matrix

(Bfoxg) [x (2,29, x9)] = @ (¢, 2,5, )

(*) Research of this Author was partially supported by NRC grant As5293.
(¥*¥) Nella seduta dell’8 maggio 1976.
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exists, and satisfies the variational equation
(1.3) d=f,lt,x(, %, %] 2,
such that ® (¢, ¢y, x,) = E (identity matrix), and
(3faty) [x (2,29, x0)] = — @ (2, 20, %) [ (%4, %0)-

As remarked by Pachpatte [2] we can impose on T various meanings.
For example, if g (¢, ,2) is of the form

gt y,e)=F(,y) +2

and if the operator T is defined by
t
Ty(z‘):[K(t,s,y(s))ds, 0 <t < s <o,
io

then (1.2) yields an integrodifferential system
t

Y (O =Ft,y®) +F{,y @) +j K(z,5,y(s)ds.
If T is defined by &
Ty () =,

where the symbol , is as defined in [8, vol IT], then (1.2) is reduced to a func-
tional-differential equation. \

In Section 2, we shall generalize a result of Talpalaru [3] for the case
when f(¢,x) = A (#)x and g (#,%,Ty) = F (¢, »). In Section 3, we establish
“generalized” asymptotic equivalence between systems (1.1) and (1.2), without
explicitly introducing this concept.

2. ASYMPTOTIC RELATIONSHIP (LINEAR CASE)

In this section we consider the systems (1.1) and (1.2) respectively in
the form ’

.0 2= A @)%
and
(2.2) V=A@Oy+ft,y)+et,y, Ty,

where A is an # X7 matrix continuous for o <7/ <oo, and extend Theorem
2.1 of Talpalaru [3] to systems (2.1) and (2.2). To that end we need the fol-
lowing lemma due to Hallam [6].
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LEMMA 1. Let there exist constarits ty, and k > 0 such that

! 1/q
[f[@(t)y‘(t)Py—l(s)I’(s) ]qu] <k for t>t,,9>1,

and suppose that o
[Ir@sora=o,

where v (2),B (), U'(¢) are nXn nonsingular and continuous matrices on 1,
and P is a projection.

Then
lim |6(0) 7 ()P | = o.

THEOREM 1. Let A(4) and T () be continuous nXn matrices defined for
t=o0 with |[A@)—T @) |0 as t>o00,|A{F) | <M, for all t=>o0, for
some constant Nl > o and '

[IESICFSICIRRES @ >0,
Let X (t) be a fundamental matrix of the system (2.1) and suppose that

() there are two supplementary projections Py and Py and a positive constant k
such that

¢ -

[f | A (t) X@OP X)L (s)]e ds—l—f [ A () X (£) Py X2 (s) [ (s) dse ds] < &4,
’ Sor all t =1t =0, t

(i) there is a nommegative continuous function \(f) in L,[o, o), such that

RO OVGE IO ESYOIEZORE 2,s€l, |y|<oo,

(iii) there is a function w (¢, n,v)eC[IXR,XR;,R,], Ry = [0, c0), non-

decreasing in u and v and with the property that w (¢, a,b)e L,[o,c0)
Jor each a and b, and furthermore

[AZONUT (g G,y (0, Ty (D | Sw (s, |y, [Ty © D, #,5€1,]y]|<ox,
v) |Ty |<#|y| for yeD.

Then for each bounded solution x (t) of (2.1) there is a bounded solution
v @ of (2.2) suck that

* lim [A@y O —T x| =o.
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Proof. Let ¢, be fixed arbitrarily, then for each bounded continuous
function y (¢¥) defined on R,o [#y, o0) with values in R” we define the norm

Iyl = sup ly@® 1.
Let x (z‘) be a bounded solution of (2.1) with ||z | < /3, p > 0, and let

B, ={ue C[Ry, R"] |2 <p}.

We define an operator = on B, as follows:

t

23 w@=x®+ fX OPL XA,y @) +50,0), Ty ()} ds

to
(e8]

[ XOP XA U5,y Ty (), Ty (s £ >4,

v
12

Using (ii), (iii) and (iv), and applying Hélder’s inequality we obtain

w0 | = els + ke [}ta wras| T U{w ore kop ]

| fw@ @ras| 4| fo{w S T

In view of the properties of A and w it is possible to choose #, such that

(2.9) ] (A ()Pds <(1/6 A  and f fw(s,p, ¥ o)} ds < (o6 &Y,
£ :
and consequently
v @ <e,
which shows that B, < B,.

Next we show that 7 is a continuous operator.
Suppose y,€ B, and y, — ¥ uniformly on every compact subinterval of

R,,. For each ¢ choose # =ty such that
~ U Up
(2.3) P [J NO)4 ds] [f{w (s,p,%F )" ds] < z/2k,
1
We let

Vit, ) =A0x@P; X)) (), i=1,2.
The for ¢, <t <4 web have:

|Tyn"“’fy(f)1$G1+G2+G3:
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where

Gy =fl¢1 ) NATONTT O v (N —F (s, y (N} | ds+

+ f% U@ D NATONTT () {g (s, 70 (), Ty (5)) —&(, (9, Ty (N} | ds,

t

<| fl beobas] [ [aar @m0 e e —rero pas]| ¥

to

2 - : . p
+ [ [A8 @ 1T (00 990 ) — 565,90, Ton ) ds] } =

to
1710 3%
~

<k [Jﬁ(z oA ()P ds]llfi— £ [J (w(s,p, & p)p ds]lip

to to

and

Gy =fl% @) IA@NT ) (f 5y ya ) —F (5,3 () | ds
+ f (@) TATONT(S) (g5, 7 () Tra () —g (5,3 (), Ty () | ds <

<4 [f(z oA ()P ds]llp—{— k [ ﬁzu ks Y ) ds]1/p< c.

21 131

The expression G, is obtained from G, by replacing ¢, in G, by ¢,. It follows
that the integral G;( =1, 2, 3) exists for all values of 7 : Consequently
]‘ryn(l‘/)—'ry(z‘) | <G;+ G, + Gy

=4 [ f (A @NT ) sy () —F (s, 3 (D} P ds]"P

h [ Jaa1 @m0 2 6130 T 69—
to

—& (5,3 (), Ty (N} PP ds]™ + <.
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Since y, (¢) =y (#) uniformly on every compact interval [#,,7], it follows
from the continuity of f,¢, T and the fact that ¢ is arbitrary that

W (&) =y (&) as 7 —> oo

uniformly on every compact subinterval of R,,. Hence = is continuous. Using
the fact that x (#) is a solution of (2.1) one can easily verify that ¢y @ is a
solution of the equation

(2.6) V=A@Qu+SEy@®) tet,y @, Ty @),

and hence the set {(7y)": y€ B,} is uniformly bounded on every finite subin-
terval of Ry . Consequently B is equicontinuous. One can apply Schauder’s
fixed point theorem to conclude that the operator equation 7 =y has a
solution y = y () which satisfies (2.6) and hence (2.2).

Now we demonstrate that (*) holds. We have

MA@y O—TOxO<IAG—T@ || @ + H, + H,,

where

o= [ 180X O P XA @£ Gy () | ds+
+ 180X O P X 26,56, Ty ) |ds <
<[ 1@ 9 1IT10s6,y6) a5+

160 91T e, 0. Ty 6) 6.

If we take the 'norm of # Xz matrix A to be the sum of the absolute values of
all the elements, then

n=[ATOAD <A@ [[A@], for te[t,00),

and by hypothesis |A (#) | <M, so |A=(#) | > #/|A| > #/M, consequently
A () | <Mjn.
But we have

AT @ [T () f s,y ) | < en (),

SO

(2.7) [T sy (D <A@ AT @) | < Mpfn) 1 (s).
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Similarly
(2.8) Tl y©, Ty | SMmo(s, e, ko),

for se [#,, 00). Consequently, using (2.7), (2.8) and Hélder’s inequality we
obtain ‘ A

mS@MW0”%@W®Yi@W@Lﬁﬂﬁmﬁmw¢io
t t

as £ —oco. Now, for any 4, > ¢#,,
12
o= [|AOX @ P X0/, 6) [ ds
o

+[1AOX O P X1 e,y @, Ty @) |ds

to

=f|A(z:)X(t) PyXA(©)f(s,y () |ds

to

- f [A@OX @O P X2()f(s,7 () |ds

+1[|A<0><@>PIXf1@>g<s,ycg,Ty<®>lds

to

14
180X OP X 86,56, Ty @) |de
ta )
Using (2.7), (2.8) and Holder’s inequality for the second and fourth term

of the above equality, we obtain

1p

ms@Mmﬂfawwﬂw+@MmLﬂwumkwwﬂ+

_|_[f|A(z)X(t)P1||X‘1(S)f(5»3’(3>)|ds

| [1roxorix0se 0, 16045,
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For each € > o, take #, > ¢, such that

f()\ ()P ds < (ne/4£Mp)y f(co (s,0,Fp)Pds < (me/g LM)P.

Since t

f]X—l(s)f(s,y(s))ldsgc,

and o ©

f]X"l(s)g(s,y(s),Ty(s)) |ds <¢

to

where ¢ is some positive real number, using Lemma 1, we can take # so large

that
23

A X @ P { f(lX*(S)f(S,y(s))I+IX"1 )&, 5 ), Ty () )ds| <e/2.

fo
Consequently for sufficiently large # we will have H; + H, <<=  Since
|A@H—D (@) |—~o0 as o0, and [z (#)|<p for all ze R, , we obtain
1Ay @O —D@x@) | —o as ¢ —»oo.

Thus the proof of Theorem 1 is complete.
We now deal with a converse problem to that considered in Theorem 1.

THEOREM 2. Let the hypothesis of Theorem 1 hold. Then for eack bounded
solution y (¢) of (2.2) there is a bounded solution x (f) of (2.1) such that (¥) holds.

Proof. Lt y(£) be a bounded solution of (2.2).
Define ‘

(o) x@®=y0)— J X@OP X3 {f(s,506) +&(,2(), Ty (N} ds+

to

F[XORX O U@ty o, @) s,

It is easy to verify that the integrals in (2 9) exist for £ >¢#,, and that x (¢)
satisfies (2.1).

The rest of the proof follows that of Theorem 1.

Remarks. 1f p =1, then g = oo then condition (i) becomes

sup [AOX AP XTI () |+ swp [AOXOPXT(OT ()| <4

fe<s<t
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Since Lemma 1 is not true in this case, it is necessary to assume that
lim |A @) X1() P, | =o.
{—>00

2) Theorem 1 includes Theorem 2.1 of Talpalaru [3].

3) In case A(%) and I'(#) are constant matrices it should be possible
to interpret the results geometrically. However, we do not intend to get
involved in such a project.

3. ASYMPTOTIC RELATIONSHIP (NONLINEAR CASE)

In this section we establish an asymptotic relationship between the solu-
tions of the nonlinear system

(3-1) x=f(, %),
and its perturbed system
(3-2) y=rt,+el,y,Ty).

We assume that for arbitrary #,>a >0 and x,€ D the solution
x(¢,2, %) of (3.1) exists for « <# < ¢, and has values in D. This of course
implies that the corresponding matrix @ (¢, #,, x,) exists in the same circum-
stances.

Now we state and prove the following theorem.

THEOREM 1. [n addition to condition (iv) assume that
W |@C s,y N6y, Ty@)—@¢,s,2()gs,2 T ()|
SWET@E—=26) Dy E—26) ], t,se1,

where W (¢, u)eC [IXR,, R,] and is monotone non decreasing in wu for
eack tel,

(vi) |®(,5,00g(s,0,0) | <ul), z,sel,

where . is a non-negative continuous function on 1 such that

[eo]

~

Ju(s)ds<oo o0,

o

(vii) f W,a)ds < J (@), for eack a>o,

where
J@) —o as ¢ — oo,
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Then for each bounded solution x (£) of (3.1) there exists a bounded solution
v (&) of (3.2) suck that

lim |y @) —x@)|=o.

Remark 1. The proof of this theorem is unusually lengthy. The main
idea is borrowed from the proof of a similar result by Marlin and Strubbe [1].
We will give below the outlines only.

Proof of the Theorem. Let x (f) be a bounded solution of (3.1) with
lx]] <pl2. For ye B, define t as follows:

(o]

6 wO=rO— [0y @Dee @, T, =1,

t

It is easy to show that 7 is a well-defined and continuous mapping on B, into
B,, and that tB, (closure) is compact. Since B, is a closed convex subset of
a locally convex Banach space S of all bounded continuous R”-valued functions
defined on R, we can apply Tychonoff’s fixed point theorem in order to prove
that 7y =y has a solution in B,. The rest of the proof follows that of
Theorem 4 of Marlin and Strubbe [1].

Theorem 2 below, deals with a converse problem to that considered in
Theorem 1 above.

THEOREM 2. Let the hypotheses of Theorem 1 hold. Then for any bounded
solution y (¢) of (3.2) there is a bounded solution x (£) of (3.1) such that

lim |y()—=x@)|=o0.

Proof. Let y(#) be a bounded solution of (3.2). The function x ()
defined by

G xO=y0 +f<b<t,s,y<s>>g<s,y<s>,Ty<s>>ds,

is well-defined, and |y () —x (#) | >0 as # —oco.  We need only prove that
x (¢) is a bounded solution of (3.1). We note that

(35 @dds) [x @, s,y D] =P, 5,y g (s, (), Ty (5).

Using the chain rule, the definition of ® and (3.5) we have

(3:6) (@A) [fZss,y N =Ffat,2(t,5,7 () P(,5,5() g(s,5(),Ty ().

40. — RENDICONTT 1976, vol. LX, fasc. 5
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The ‘relations (3.4) and (3.5) yield
N
6D FO=y®+lm @,y ©]ds

=y +limx (@, N,y (N)) —y )
N—>oo0

=limx (¢, N,y N\
N—o00 ‘

Differentiating (3.4), and using (3.5) and (3.6) we get
FO=fCy O+ @A x s,y @)1 ds=

N
A A0) +N{Ln2°f(d/d3) (f@, x5,y ()] ds=

—lim f (¢, % (¢, N,y (D) =F (¢, % (D).

N—o0

Since y-(¢) is bounded so is x (¢) and thus the proof of the theorem is complete
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