ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

OFELIA TERESA ALAS

On Blumberg’s theorem

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 60 (1976), n.5, p. 579-582.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_60_5_579_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1976_8_60_5_579_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1976.



OrFELIA TERESA ALAS, On Blumberg’s theorem 579

Analisi matematica. — On Blumberg’s theorem. Nota di OFELIA
TEREsa Aras, presentata ® dal Socio B. Sgcre.

RIASSUNTO. — Si stabilisce un’estensione di un teorema di Blumberg includente altre
pil 0 meno recenti estensioni [4, 5, 2].

H. Blumberg showed that if / is a real-valued function on R” there is a
dense subset D of R” such that f restricted to D is continuous. H. R. Bennet
[2], J.C. Bradford and Casper Goffman [4], H. E. White Jr. [5], extended
this theorem in different ways. An extension of Blumberg’s theorem (inclu-
ding the precedent ones) will be proved here.

First we recall some definitions and theorems.

Let X be a topological space, (Y ,d) be a metric space andf X =Y
be a function.

DEFINITION 1 ([2]). The function f is said to approach xe X First
Categorically (written f1 —x) if there is an ¢>o0 and a neighborhood
N (x,¢) of x such that

M (x,e) = {ze N (x,2) |d (f (&), f () < e}
is a First Catégory set.
DEFINITION 2 ([2]). The function f is said to approach xe€ X densely

(written f —x densely) if given ¢ > o there is a neighborhood N (x,¢) of
x such that

M@, ={2eN(x,¢) [d(f(2), /() <e}

is dense in N (x,¢). If D X and x is a limit point of D then f is said to
approach x densely via D (written f — x densely via D) if given ¢ > o there
is a neighborhood N (x, ) of x such that M (x, <) n D is dense in N (x, €) n D.

DEFINITION 3 ([2]) An open set Uc X is a partial neighborhood of a
point x € X if either xe U or x is a limit point of U.

DEFINITTON 4 ([3]). X has a o-disjoint pseudo-bas¢ if there is a set
B=U{B,|z=1,2,--} of open subsets of X such that for each 7 the
members of B, are pairwise disjoint and for every nonempty open set U = X
there is a nonempty V€ B contained in U.

THEOREM A ([2]). If x€ X, then f —x densely if and only if for eac}z'
partial neighborhood U of x , f (x) is a limit point of f(U).

(*) Nella seduta dell’8 maggio 1976.
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THEOREM B (Banach). /f Ec X s such that eackh point of E is First
Category relative to X then E itself is of First Category in X.

Following the proof of Theorem (1.6) of [2] we have

THEOREM 1. ZLet X be a topological space, (Y ,d) be a second countable
metric space and f: X =Y be a function. Then Fy={xe X |f1—>2x} and
Fo,={xe X | f does not densely approach x} are sets of First Category in X.

Proof. If xeF, there is € (x) > o and a neighborhood N (x, ¢ (x)) of x
such that M (x,e(x)) = {ze N, () |d(f (), f(x) <e(x)} is a set of
First Category in X. (With no lost of generality we may assume ¢ (x) of
the form 1/m where m =1,2,---). For each A=1,2,--- let C(k) =
={xeF,|e(®)=1/k} and let D(#) = {a(k,?)|i=1,2,---} be a coun-
table dense subset of f(C (). Let D= uU{a(k,d) |k,i=1,2,---}. If
a(m,i)eD let R(m,i)={xeC(m)|d(a(m,i),f(x) <1/zm} and if
x€R (m,7) let

RM (x,d) ={z2eM (x, 1/m) |d (f(2),a(m, i) < 1]2m).

Now, if x,ye€ R(m,7) and 2 RM (x,4)n N(y, 1/m) then ze RM (y, 7).
Indeed, x,ye€ R (m,?) imply d(a(m,?), f(x)) <1/z2m and d(a(m,7),
f () <ilz2m; z€ RM (x, 7). implies 2e€ M (x, 1/m) and d (f(2),a(m, 7)) <
< 1/zm. Thus, d(f(2),f(y)) <1i/m and ze N (¥, 1/m); it follows that
ze M (y,1/m) and & (f(2),a(m 7)) <1[2m; in consequence z€ RM (y,7).
Putting T (7 ,7) = U{RM (x,7) |x€ R (m,%)} we have that T (m,7) is of
First Category in each of its points and by Theorem B is of First Category in X.
Finally, we have that F;c U{T (m ,%)|m ,i=1,2,---} and this last set
is of First Category in X.

Let us now prove the second part of the theorem. For each xe F,
there is €{x) > o such that for each neighborhood N (x, e (x)) of x the set
M(x,e(x) ={ze N(x,e(®) |d(f(2), f (*)) <e(x)} is not dense in N (x,e(x).

Since Y is second countable let {G, |~z =1,2,---} be an open basis
of Y. For each n=1,2,--- let

F@m) ={zeF|f®eG,=B(f(x),=@))}

Since F, is contained in U {F (%) |#» = 1,2 ,---} it is enough to prove that the
interior of the closure of F (%) is empty for each #» = 1,2, --- On the con-
trary, let G be a nonempty open set contained in the closure of F () for some
n; if p,0eGNF @) then d(F(p),f@)<c(p) and {geG |d(f(p),
F(@) <e(p)} would be dense in G which is not possible. The proof is
completed.

THEOREM 2. Let X be a Baire topological space, (Y ,d) be a second coun-
table metric space and f:X =Y be a function. There is a dense set D < X
such that if x€D then f —x densely via D.
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Proof. This theorem is a generalization of Theorem 2.2 of [2]. Let
Fy={xe X| f1 —x}; by Theorem 1 F, is of First Category in X. Now put
X;=X-—F, and F, = {xe X, | f does not densely approach x via X,};
by virtue of Theorem 1 F, is of First Category in X; (and thus in X).
Put D=X—({F,; yFy); D is dense in X and we shall prove that for
each xeD, f—x densely via D. Indeed, let xeD and let U be a partial
neighborhood of x in X (thus, U N D is a partial neighborhood of x in D).
~ Since x ¢ F;, f—x densely via Xj; given ¢ > o, there is a neighborhood
M (x,€/2) of x in X such that

M (x,ef2) N X; ={2eN (x,¢/2) |d(f(2), f(x) <el2} N X,

is dense in N (x,¢/2) N X,. Then, thereis a g UN M (x,¢/2) N X, and,
since ¢ does not belong to F,, the set {zeU |d(f(2), f(9) <¢e/2}ND
is not of First Category in X. If y belongs to this last set, we have that
a(f(¥), f(x) <e; it follows that f(x) is a limit point of #(U n D), and
by Theorem 1.5 of [2], f —x densely via D.

THEOREM 3. Let X be a Baire semi-metrizable topological space, (Y ,d)
be a second countable metric space and f:X —Y be a function. There is a
dense subset D of X such that f restricted to D is continuous.

Proof. The proof follows in an analogous way of that of Theorem 2.3
of [2], since this last proof depends only on.the existence of a dense subsect
D of X, such that for each x€ D, f — x densely via D.

THEOREM 4. Let X be a Baire Hausdor[f space with a c-disjoint pseudo-
base, Y be a Hausdorff second countable space and f:X —Y be a function.
There is a dense subset D of X such that the restriction of f to D is continuous.

Proof.- Following Proposition 1.7 of [5], let Z = U{P,|n=1,2, -}
be a o-disjoint pseudo-base of X; we may assume that, for each #, G, = U P,
is dense in X and P, refines P,_;. Since X is a Baire space, X' = n {G,|
|#=1,2,--}is dense in X. Put P(X") = {Pn X'|Pe}. Then P (X’)
is a base for a topology * on X’ and is a pseudo-base for the subspace topo-
logy on X'. Since each element of P (X') is open-closed in (X, 7*), this last
space is regulat and P (X') is a ¢-discrete base for t*; thus, (X', v*) is pseudo-
metrizable.

Furthermore, (X', 7*) is a Baire space. On the other hand, since Y is a
Hausdorff second countable space, there is a second countable metric space
Z and a function g:Z — Y, which is continuous and bijective.

Now we have the Baire pseudo-metrizable space (X', t¥), the second
countable metric space Z and the function %:X’—7Z, which assigns to
each xe€ X’ the element z€ Z, where g () = f (¥). Since every Baire pseudo-
metrizable spage contains a dense Baire metrizable subspace, we may apply
Theorem 3 and there is a dense subset D of X’ such that the restriction
of 2 to D is continuous. But, since g is continuous, the restriction of f
to D is continuous. (Indeed, for each xe D, f(x) = g (% (x))).
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We now give a example to show that the hypothesis of second coun-
“tability of Y in Theorem 4 cannot be entirely avoided.

Lxample. Let R be the real line (with the usual topology) and Y be the
discrete space over the real numbers. Let f: R — Y be the identity function.
Let us assume that there exists a dense subset D of R such that the restriction
of / to D is continuous. For each y¢ f (D), the inverse image set f1({}) is
an open unitary set in D; thus, there is an open set U, in R such that /1 ({y}) =
= U, n D. It follows that the open set U, has just one point in D, which
impossible, because D is dense in R.
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