## Atti Accademia Nazionale dei Lincei

# Classe Scienze Fisiche Matematiche Naturali RENDIConti 

## Willem Mielants

## A regular 5-graph

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 60 (1976), n.5, p. 573-578.
Accademia Nazionale dei Lincei
[http://www.bdim.eu/item?id=RLINA_1976_8_60_5_573_0](http://www.bdim.eu/item?id=RLINA_1976_8_60_5_573_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Teorie combinatorie. - A regular 5-graph. Nota di Willem Mielants, presentata (*) dal Socio B. Segre.


#### Abstract

Riassunto. - Mentre si conoscono vari eleganti $t$-grafi regolari per $t=2$, per $t \geq 3$ se ne conoscono pochissimi; in particolare, per $t=5$ ne era noto soltanto uno [I], collegato col sistema di Steiner $L_{12}$ dovuto a Witt. Qui viene costruito e studiato un altro 5-grafo regolare, collegatc col gruppo di Mathieu $\mathrm{M}_{24}$.


## I. $Z_{2}$-COHOMOLOGY OF $k$-SySTEMS

We denote the set of all $k$-subsets of a set $\Omega$ by $\Omega^{|k|}$ and call a subset of $\Omega^{|k|}$ a $k$-system on $\Omega$.

We define now the $Z_{2}$-coboundary operator $\delta: \operatorname{Hom}\left(\Omega^{|k|}, Z_{2}\right) \rightarrow \operatorname{Hom}$ $\left(\Omega^{|k+1|}, Z_{2}\right)$ as follows. If $f \in \operatorname{Hom}\left(\Omega^{|k|}, Z_{2}\right)$ and if $\alpha=\left\{x_{1}, x_{2}, \cdots x_{i+1}\right\} \in \Omega^{|k+1|}$ then

$$
\delta f(\alpha)=\sum_{i=1}^{k+1} f\left(\hat{\alpha}_{i}\right) \quad \text { with } \quad \hat{\alpha}_{i}=\alpha /\left\{x_{i}\right\} .
$$

With each $f \in \operatorname{Hom}\left(\Omega^{|k|}, Z_{2}\right)$ corresponds a $k$-system $\Delta(f)$ on $\Omega$ with $\alpha \in \Delta(f) \Leftrightarrow f(\alpha)=\mathrm{I}$. Hence the $Z_{2}$-coboundary of a $k$-system $\Delta(f)$ on $\Omega$ is the set of all those ( $k+\mathrm{I}$ )-subsets of $\Omega$ containing an odd number of blocks of $\Delta(f)$. A $(k+1)$-system on $\Omega$ with vanishing $Z_{2}$-coboundary (or a $Z_{2^{-}}$ cocycle) is called [I] a $k$-graph on $\Omega$; and it is called a regular $k$-graph it it is also a $k$-design. The only known regular $k$-graphs with $k \geq 3$ [I] are: a regular 3 -graph which is the design of non-planar 4 -subsets of $A G(3,2)$ on 8 points, and a double extension of the Petersen graph on 12 points, admitting the Mathieu group $\mathrm{M}_{11}$ in its, 3-transitive representation on 12 points as a group of automorphisms.

No models are known of regular 4-graphs and the design of 6 -subsets which are no blocks of the Steiner system $\mathrm{L}_{12}$ of Witt is the only known example of a regular 5 -graph.

If $f, g \in \operatorname{Hom}\left(\Omega^{|k|}, Z_{2}\right)$ then the equivalence classes of $k$-systems on $\Omega$ defined by the equivalence relation $\Delta(f) \sim \Delta(g) \Longleftrightarrow \delta f \equiv \delta g$ are called the Seidel classes or switching classes of $k$-systems on the set $\Omega$ [I]. Interesting $k$-systems are of course transitive designs with $k$ points on each block or the orbits or union of orbits of $k$-subsets of transitive permutation groups.

If G is a $t$-transitive permutation group on $\Omega$ which is not $k$-homogeneous and if $\mathrm{A} \in \Omega^{|k|}$ then the orbit of $\mathrm{A}:\left\{\mathrm{A}^{g} \| g \in \mathrm{G}\right\}$ is a $t-[|\Omega|, k, \lambda]$-design with $\left|G_{A}\right|^{-1} \cdot|G|$ blocks ( $G_{A}$ being the setwise stabilizer of $G$ with respect to A ). The only known 5 -transitive permutation groups which are not trivial

[^0](no symmetrical or alternating groups) are the Mathieu groups of degree 12 and 24. The Mathieu group $M_{12}$ is the setwise stabilizer of $\mathrm{M}_{24}$ with respect to a special 12 -subset. Now we shall make a study of the $Z_{2}$-coboundaries and the switching classes of the orbits of subsets of $\Omega_{24}$ by the Mathieu group $\mathrm{M}_{24}$.

## 2. The Mathieu group $\mathrm{M}_{24}$

The simple group $\operatorname{PSL}(3,4)$ acting doubly transitive on the 21 points of the projective plane of order $4: \operatorname{PG}(2,4)$ has a transitive extension: the simple Mathieu group of degree 22 acting triply transitive on $\left\{x_{1}^{\infty}\right\} \cup \operatorname{PG}(2,4)$. The orbit of $\left\{x_{1}^{\infty}\right\} \cup L$ where $L$ is a line of $P G(2,4)$ by $M_{22}$ is the Steiner system $3-(22,6, \mathrm{I})$ of Witt which we denote by $\mathrm{L}_{22}$ and which is an extension of the projective plane $\operatorname{PG}(2,4) . \mathrm{M}_{22}$ has a transitive extension: the simple Mathieu group of degree 23: $\mathrm{M}_{23}$ acting quadruply transitive on $\left\{x_{1}^{\infty}\right\} \cup\left\{x_{2}^{\infty}\right\} \cup$ $\cup \operatorname{PG}(2,4)$ and the orbit of $\left\{x_{1}^{\infty}\right\} \cup\left\{x_{2}^{\infty}\right\} \cup L$ where $L$ is a line of $\operatorname{PG}(2,4)$ by $\mathrm{M}_{23}$ is the Steiner system 4-(23,7,I) of Witt which we denote by $L_{23}$ and which is an extension of $\mathrm{L}_{22} . \quad \mathrm{M}_{23}$ has also a transitive extension: the simple Mathieu group of degree 24 acting quintuply transitive on $\left\{x_{1}^{\infty}\right\} \cup\left\{x_{2}^{\infty}\right\} \cup\left\{x_{3}^{\infty}\right\} \cup$ $\cup P G(2,4)$ and the orbit of $\left\{x_{1}^{\infty}\right\} \cup\left\{x_{2}^{\infty}\right\} \cup\left\{x_{3}^{\infty}\right\} \cup L$ where $L$ is a line of PG $(2,4)$ by $\mathrm{M}_{24}$ is the Steiner system $5-(24,8$, I$)$ of Witt which we denote by $\mathrm{L}_{24}$ and which is an extension of $\mathrm{L}_{23}$.
$\mathrm{M}_{24}$ has no transitive extension [3]. $\mathrm{M}_{24}$ can also be defined as a permutation group on the 24 points of a projective line on the Galois field GF (23) obtained by adjoining to the group $\operatorname{PSL}(2,23)$ the permutation $\alpha$ with $x^{\alpha}=9 x^{3}$ if $x$ is a non-square of GF (23) and $x^{\alpha}=\mathrm{I} / 9 x^{3}$ is $x$ is a square of GF (23) [2].

Consider a set $\Omega$ of 24 elements. By defining the sum of two subsets of $\Omega$ as their symmetrical difference, we obtain a 24 -dimensional vector space over GF (2).

In this vector space $\mathrm{M}_{24}$ leaves invariant a 12 -dimensional subspace $C$ (called the perfect binary ( $24, \mathrm{I} 2$ ) Golay-code). This perfect code contains 759 words of weight 8 and 2576 words of weight i2. The corresponding 8 and I 2 -subsets of $\Omega$ are called the special octads and the umbral dodecads. The special octads are the blocks of the Steiner system $\mathrm{L}_{24}$.

Consider an umbral dodecad in $\mathrm{L}_{24}$ and denote 3 of its points by $x_{1}^{\infty}, x_{2}^{\infty}$ and $x_{3}^{\infty}$, then the internal structure $\left(\mathrm{L}_{24}\right)_{\left\{x_{1}^{\infty}, x_{2}^{\infty}, x_{3}^{\infty}\right\}}$ is the projective plane of order 4 : PG $(2,4)$, and the 9 remaining points of the umbral dodecad are the 9 absolute points of a unitary polarity in $\operatorname{PG}(2,4)$ [3].

The setwise stabilizer of $\mathrm{M}_{24}$ with respect to a special octad is the group $2^{4}$. Alt (8) which is an extension of the alternating group of degree 8 by the elementary Abelian 2-group of order 16 acting regular on the 16 remaining points of $\mathrm{L}_{24}$. The stabilizer of an arbitrary point is Alt (8) acting on the 15 remaining points equivalently as $\operatorname{PSL}(4,2)$ on the points of $\operatorname{PG}(3,2)$.

The setwise stabilizer of $\mathrm{M}_{24}$ with respect to an umbral dodecad is the Mathieu group $\mathrm{M}_{12}$.

A $n$-subset of $\mathrm{L}_{24}$ with $n<12$ is called a special $n$-ad if it contains or is contained in a special octad.

A $n$-subset of $L_{24}$ with $5<n<12$ is called an umbral $n$-ad if it is contained in an umbral dodecad.

An $n$-subset of $\mathrm{L}_{24}$ with $7<n<12$ which is not a special $n$-ad or an umbral $n$-ad is called a transverse $n$-ad.

A non-umbral dodecad is called extra special if it contains three special octads, special if it contains exactly one special octad, penumbral if it contains all but one of the points of an umbral dodecad, and transverse in all other cases.

Sets of more than 12 points are described by the same adjectives as their complements.

We denote the set of special $n$-ads ( $0 \leq n \leq 24$ ) by $\mathrm{S}_{n}$,
the set of umbral $n$-ads ( $6 \leq n \leq 18$ ) by $\mathrm{U}_{n}$,
the set of transverse $n$-ads ( $8 \leq n \leq 16$ ) by $\mathrm{T}_{n}$,
the set of extra special dodecads by $\mathrm{S}_{12}^{+}$,
and the set of penumbral dodecads by $\mathrm{U}_{12}^{-}$.
Conway [2] has proved that those sets are exactly the 49 orbits of subsets of $\Omega_{24}$ by the Mathieu group $\mathrm{M}_{24}$.

By proving the uniqueness of the extensions of $\operatorname{PG}(2,4), \mathrm{L}_{22}$ and $\mathrm{L}_{23}$, Lüneburg [3] has also found the following geometrical model of $\mathrm{L}_{24}$. The points of $L_{24}$ are the points of $\operatorname{PG}(2,4)$ together with 3 new points: $x_{1}^{\infty}, x_{2}^{\infty}$ and $x_{3}^{\infty}$.

The blocks of $L_{24}$ are the lines of $\operatorname{PG}(2,4)$, the hyperovals of PG $(2,4)$ (ovals together with their nucleus), the Baer subplanes of PG $(2,4)$ (in this case the Fano-configurations), and the symmetric differences of pairs of lines in $\operatorname{PG}(2,4)$.

To define the incidences we have first to remark that the groups PSL (3, 4) has exactly 3 orbits of hyperovals: $\Delta_{1}, \Delta_{2}, \Delta_{3}$ and exactly 3 orbits of Baer subplanes: $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}$.

With each pair of orbits of hyperovals $\Delta_{i}, \Delta_{j}$ corresponds exactly one orbit of Baer subplanes $U_{k}$ with the property that for $\forall \alpha \in \Delta_{i}, \forall \beta \in \Delta_{j}$ and $\forall \gamma \in \mathrm{U}_{k} \Rightarrow|\alpha \cap \gamma| \leq 3$ and $|\beta \cap \gamma| \leq 3[i, j, k \in\{\mathrm{I}, 2,3\} i \neq j i \neq k j \neq k]$.

A point of $\operatorname{PG}(2,4)$ is incident with a block if it is incident with it in PG (2, 4).

A point $x_{i}^{\infty}(i=1,2,3)$ is incident with each line of $\operatorname{PG}(2,4)$ with each hyperoval not belonging to the orbit $\Delta_{i}$ and with each Baer subplane of the orbit $\mathrm{U}_{i}$.

With this incidence the points and blocks form the $5-(24,8$, I) Steinersystem of Witt.

## 3. THE REGULAR 5-GRAPH OF UMBRAL HEXADS of $\mathrm{M}_{24}$

An umbral hexad of $\mathrm{M}_{24}$ is a 6-subset of the Steiner system $\mathrm{L}_{24}$ not contained in a block. If we denote three of its points by $x_{1}^{\infty}, x_{2}^{\infty}$ and $x_{3}^{\infty}$ then the three remaining points form a triangle in $\operatorname{PG}(2,4)$.

Since it admits $\mathrm{M}_{24}$ as a 5 -transitive group of automorphisms it is a 5 -design and since there are 16 possibilities for a sixth point of a block if 5 are given it is a $5-(24,6,16)$ design.

Now we prove that it is a regular 5 -graph or that its $Z_{2}$-coboundary is zero or that each 7 -subset of $L_{24}$ contains an even number of umbral hexads.

Of course a special heptad contains no umbral hexads. Consider now an umbral heptad A. If we denote three of its points by $x_{1}^{\infty}, x_{2}^{\infty}, x_{3^{\prime}}^{\infty}$ then the remaining 4 points are not collinear in $\mathrm{PG}(2,4)$.

If they form a quadrangle $\left(B_{1} B_{2} B_{3} B_{4}\right)$ in $\operatorname{PG}(2,4)$ then there is a unique hyperoval incident with them (denote the orbit of hyperovals of $\operatorname{PSL}(3,4)$ to which it belongs by $\left.\Delta_{1}\right)$.

Of course $\mathrm{A}-\left\{\mathrm{B}_{i}\right\}(i=\mathrm{I}, 2,3,4)$ is always an umbral hexad. Also $\mathrm{A}-\left\{x_{2}^{\infty}\right\}$ and $\mathrm{A}-\left\{x_{3}^{\infty}\right\}$ are umbral hexads since the hyperoval incident with $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}$ belongs not to the orbits $\Delta_{2}$ and $\Delta_{3}$. But $\mathrm{A}-\left\{x_{1}^{\infty}\right\}$ is a special hexad since the 4 points $B_{1} B_{2} B_{3} B_{4}$ belong to a hyperoval of the orbit $\Delta_{1}$ and so $x_{2}^{\infty}, x_{3}^{\infty}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$ belong to a block of $\mathrm{L}_{24}$.

If now $B_{2} B_{3}$ and $B_{4}$ are collinear and $B_{1}$ is not incident with this line of course $\mathrm{A}-\left\{x_{i}^{\infty}\right\}(i=1,2,3)$ is always a umbral hexad. Also $\mathrm{A}-\left\{\mathrm{B}_{i}\right\}$ $i=2,3,4$ are umbral hexads but $\mathrm{A}-\left\{\mathrm{B}_{1}\right\}$ is then a special hexad.

Hence each special heptad contains exactly zero umbral hexads and each umbral heptad contains exactly 6 umbral hexads. So each 7 -subset of $L_{24}$ contains an even number of umbral hexads and so the $5-(24,6,16)$ design of umbral hexads is a $Z_{2}$-cocycle or a regular 5 -graph.

## 4. The Seidel classes of orbits of subsets of $\Omega_{24}$ By $\mathrm{M}_{24}$

In the same manner the $Z_{2}$-coboundaries of all the other orbits of subsets of $\Omega_{24}$ by $\mathrm{M}_{24}$ can be found.
$k=6$ Two Seidel classes: $\mathrm{S}_{6}$ and $\mathrm{U}_{6}$.
The $Z_{2}$-coboundary of $S_{6}$ is $\Omega^{|7|}$ or the set of all 7 subsets.
The $Z_{2}$-coboundary of $U_{6}$ is zero (this is the regular 5 -graph).
$k=7$ One Seidel class.
Since $\Omega^{[7]}$ is itself a $Z_{2}$-coboundary, all orbits of 7 -subsets are switching.
The $Z_{2}$-coboundary of $S_{7}$ and $U_{7}$ is the orbit of transverse octads ( $\mathrm{T}_{8}$ ).
$k=8$ Three Seidel classes.
One 7-graph: $\mathrm{T}_{8}$.
The $Z_{2}$-coboundary of the Steiner system $L_{24}$ is $S_{9}$.
The $Z_{2}$-coboundary of $U_{8}$ is $T_{9} \cup U_{9}$.
$k=9$ One Seidel class.
The orbits of 9 -subsets are all switching since $S_{9}, T_{9}$ and $U_{9}$ are all 8-graphs.
$k=$ ı $0 \quad$ Three Seidel classes
One 9-graph: $\mathrm{T}_{10}$.
The $Z_{2}$-coboundary of $S_{10}$ is $S_{11}$.
The $Z_{2}$-coboundary of $U_{10}$ is $T_{11} \cup U_{11}$.
$k=\mathrm{II} \quad$ Two Seidel classes
One ro-graph: $\mathrm{S}_{11}$.
Since $T_{11} \cup U_{11}$ it itself a $Z_{2}$-coboundary $T_{11}$ and $U_{11}$ are switching, and have the orbit of penumbral dodecads as $Z_{2}$-coboundary.
$k=12 \quad$ Four Seidel classes.
Two il-graphs: $T_{12}$ and $\mathrm{U}_{12}^{-}$.
The $Z_{2}$-coboundaries of $\mathrm{S}_{12}^{+}, \mathrm{S}_{12}$ and $\mathrm{U}_{12}$ are respectively $\mathrm{S}_{13}, \mathrm{~T}_{13}$ and $\mathrm{U}_{13}$.
$k=13$ One Seidel class.
$\mathrm{S}_{13}, \mathrm{~T}_{13}$ and $\mathrm{U}_{13}$ are all 12-graphs.
$k=14$ Three Seidel classes.
One I3-graph: $\mathrm{T}_{14}$.
The $Z_{2}$-coboundaries of $S_{14}$ and $U_{14}$ are respectively $S_{15} \cup T_{15}$ and $\mathrm{U}_{15}$.
$k=$ I $5 \quad$ Two Seidel classes.
One 14 -graph: $\mathrm{U}_{15}$.
Since $S_{15} \cup T_{15}$ is itself a $Z_{2}$-coboundary,
$S_{15}$ and $T_{15}$ are switching and have as $Z_{2}$-coboundary $T_{16}$.
$k=16$ Three Seidel classes.
One I5-graph: $\mathrm{T}_{16}$.
The $Z_{2}$-coboundaries of $S_{16}$ and $U_{16}$ are respectively $S_{17}$ and $U_{17}$.
$k=\mathrm{I}_{7} \quad$ One Seidel class.
$\mathrm{S}_{17}$ and $\mathrm{U}_{17}$ are both i6-graphs.
$k=18 \quad$ Two Seidel classes.
One ${ }^{17}$-graph: $\mathrm{U}_{18}$.
The $Z_{2}$-coboundary of $S_{18}$ is $S_{19}$.
For $k>18$ all $Z_{2}$-cohomology is trivial.
Hence we have the following non-trivial 5 -transitive $\mathrm{Z}_{2}$-cocycles on 24 points: $\mathrm{U}_{6}, \mathrm{~T}_{8}, \mathrm{~S}_{9}, \mathrm{~T}_{9}, \mathrm{U}_{9}, \mathrm{~S}_{9} \cup \mathrm{~T}_{9}, \mathrm{~S}_{9} \cup \mathrm{U}_{9}, \mathrm{~T}_{9} \cup \mathrm{U}_{9}, \mathrm{~T}_{10}, \mathrm{~S}_{11}, \mathrm{~T}_{11} \cup \mathrm{U}_{11}$, $\mathrm{T}_{12}, \mathrm{U}_{12}^{-}, \mathrm{T}_{12} \cup \mathrm{U}_{12}^{-}, \mathrm{S}_{13}, \mathrm{~T}_{13}, \mathrm{U}_{13}, \mathrm{~S}_{13} \cup \mathrm{~T}_{13}, \mathrm{~S}_{13} \cup \mathrm{U}_{13}, \mathrm{~T}_{13} \cup \mathrm{U}_{13}, \mathrm{~T}_{14}, \mathrm{U}_{15}$, $\mathrm{S}_{15} \cup \mathrm{~T}_{15}, \mathrm{~T}_{16}, \mathrm{~S}_{17}, \mathrm{U}_{17}$ and $\mathrm{U}_{18}$.
38. - RENDICONTI 1976, vol. LX, fasc. 5

## References

[1] P. J. Cameron and J. H. Van Lint (1975) - Graph Theory, Coding Theory and Block designs. London Mathematical Society, "Lecture Note series», I9, II3 pp., Cambridge University Press.
[2] J. H. Conway (1971) - Three Lectures on Exceptional Groups. Finite Simple Groups (215-246), Academic Press.
[3] H. LÜneburg (1969) - Transitive Erweiterungen endlicher Permutationsgruppen, «Lecture Notes», 84, II9, Springer Verlag.


[^0]:    (*) Nella seduta dell'8 maggio 1976 .

