ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

LUIGI SERENA

Remarks on Functors in Lie algebras

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **60** (1976), n.5, p. 557–563.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_60_5_557_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1976.

Algebra. — Remarks on Functors in Lie algebras (*). Nota di LUIGI SERENA, presentata (**) dal Corrisp. G. ZAPPA.

RIASSUNTO. — In questa Nota si studiano i funtori definiti sulla classe della Algebre di Lie di dimensione finita su un campo algebricamente chiuso di caratteristica zero e si determinano quelli massimali e non coincidenti con il funtore universale sulle algebre di Lie risolubili oppure sulle algebre di Lie semisemplici.

In [2] Barnes and Gastineau-Hills introduced the notion of *functor* on the class of finite-dimensional (soluble) Lie algebras over some fixed field as a rule \mathbf{F} selecting in every such Lie algebra L a set \mathbf{F} (L) of subalgebras subject to the axioms:

α: If φ is a homomorphism of L and F \in **F**(L), then F^{φ} \in **F**(L^{φ});

 β : If $L \in \mathbf{F}(L)$, then $\{L\} = \mathbf{F}(L)$;

 $\gamma {:}\ If\ F\in {\bm F}\,(L),$ and F is contained in some subalgebra M of L, then $F\in {\bm F}\,(M).$

If one restricts attention to Lie algebras over an algebraically closed field of characteristic O, then the results of [2] show that the only functors selecting only soluble subalgebras are the zero functor **O**, the Cartan functor **C** which selects in every Lie algebra L the set C (L) of Cartan subalgebras, and the Borel functor selecting the set of all maximal soluble subalgebras of L. In non-soluble Lie algebras there are also other functors, for example the Levi functor **S** selecting in L the set **S** (L) of Levi (= maximal semi-simple) subalgebras. Of course one would like to obtain some sort of survey of the possible functors. Here we shall go a few steps in that direction.

The functors C, B and S select in L a set of isomorphic subalgebras (in fact they are conjugate under the group Aut L). Thus one might hope that every functor is so well-behaved. We shall give an example showing that this hope is ill founded.

There are two natural partial orders on the set of all functors on the class of finite-dimensional Lie algebras: $\mathbf{F} \subset \mathbf{G}$ if and only if for every Lie algebra L and for every $F \in \mathbf{F}(L)$ there is a subalgebra $G \in \mathbf{G}(L)$ with $F \subseteq G$. More restrictively, we put $\mathbf{F} < \mathbf{G}$ if $\mathbf{F} \subset \mathbf{G}$ and if for every $G \in \mathbf{G}(L)$ there is an $F \in \mathbf{F}(L)$ with $F \subseteq G$. One would like to obtain a survey of the maximal functors (if they exist)—here we mean maximal distinct from \mathbf{U} , the universal functor, associating $\{L\} = \mathbf{U}(L)$ to L. Does every functor \mathbf{F} lie below (in any of the two orderings) some maximal functor?

(**) Nella seduta dell'8 maggio 1976.

^(*) Eseguito nell'ambito dell'attività del G.N.S.A.G.A. del C.N.R.

In the search for answers to these questions we have found a few new types of functors which may be of some interest. All the maximal functors have been determined which do not coincide with the universal functor \mathbf{U} on the soluble as well as the semi-simple Lie algebras, and every functor with this property lies below one of these. However, there exist functors $\mathbf{F} \neq \mathbf{U}$ coinciding with \mathbf{U} on the soluble as well as the semi-simple Lie algebras. We have not been able to determine the maximal ones among these.

All Lie algebras considered will be finite-dimensional over some fixed algebraically closed field of characteristic zero. The standard fact used is that such an algebra L has the form $L = A + \mathbf{R}$ (L), where A is a Levi sub-algebra (= maximal semi-simple) and \mathbf{R} (L) is the maximal soluble ideal of L (see, for example [3]).

I. SOME MAXIMAL FUNCTORS

In a fixed simple Lie algebra S select a non-empty set \mathbf{M} (S) of maximal subalgebras of S which is invariant under the group of all automorphisms of S. Observe that this defines the set \mathbf{M} (T) for every algebra T isomorphic to S. We want to extend this selection to a rule $\mathbf{M}_{\rm S}$ selecting a set of sub-algebras in every Lie algebra L.

DEFINITION. Let L be any Lie algebra and A any Levi subalgebra of L. The Lie algebra A decomposes into the direct sum $A = A_{\{S\}} \oplus A_{\{S\}}'$, where $A_{\{S\}}$ is a direct sum of copies of S and $A_{\{S\}}'$, a direct sum of simple subalgebras of A not isomorphic to S. If $A_S = (0)$, put $\mathbf{M}_S(L) = L$. If $A_{\{S\}} = \bigoplus_{i=1}^n S_i$, put

$$\mathbf{M}_{\mathrm{S}}\left(\mathrm{L}\right) = \left\{ \left(\stackrel{\textbf{\textit{n}}}{\oplus} \mathrm{M}_{i} \right) + \mathrm{A}_{\mathrm{S}}, + \mathbf{R}\left(\mathrm{L}\right); \, \mathrm{M}_{i} \in \mathbf{M}\left(\mathrm{S}_{i}\right) \right\}.$$

This definition does not depend on the choice of the Levi subalgebra A in L, since the Levi subalgebras of L are conjugate under the special automorphisms of L defined in terms of \mathbf{R} (L) (see [3]).

THEOREM 1. For the simple Lie algebra S the rule \mathbf{M}_{S} is a functor.

Proof. Since homomorphism of L map Levi subalgebras of L to Levi subalgebras of the homomorphic image, it is clear that for every homomorphism φ of L one has $\mathbf{M}_{S}(L^{\varphi}) = (\mathbf{M}_{S}(L))^{\varphi}$. If $L \in \mathbf{M}_{S}(L)$, then L cannot have any composition factor isomorphic to S. By the definition of \mathbf{M}_{S} one thus has $\mathbf{M}_{S}(L) = \{L\}$. If B is any subalgebra of L containing $M \in \mathbf{M}_{S}(L)$, then $B = (B \cap A_{\{S\}}) + A_{\{S\}'} + \mathbf{R}(L)$ for any Levi subalgebra A of L. Now

$$B \cap A_{\{S\}} = \bigoplus_{i=1}^{n} (B \cap S_{i}) \quad \text{if} \quad M = \binom{n}{\bigoplus I_{i=1}} M_{i} + A_{\{S\}'} + \mathbf{R} (L).$$

If now $B \cap S_i \stackrel{\supset}{=} M_i$, then $B \cap S_i = S_i$ and $M_i \in \mathbf{M}(S_i)$. Thus one has $M \in \mathbf{M}_S(B)$, and \mathbf{M}_S is a functor.

In general, the simple Lie algebra S has maximal subalgebras which are non-isomorphic (see, for example, Dynkin [4]). Thus we see that the subalgebras of the Lie algebra L selected by the functor $\mathbf{M}_{\rm S}$ need not be isomorphic.

COROLLARY 1. If the functor \mathbf{F} does not coincide with the universal functor \mathbf{U} on the class of simple Lie algebras, then there is a simple Lie algebra S and a set \mathbf{M} (S) of maximal subalgebras of S so that $\mathbf{F} < \mathbf{M}_{S}$.

Proof. Since **F** does not coincide with **U** on the class of simple Lie algebras, there is a simple Lie algebra S with S \notin **F**(S). Put **M**(S) the set of all maximal subalgebras of S containing some $F \in$ **F**(S). Then it follows from the definition of the functor **M**_S and from the homomorphism invariance of **F**(L) and **M**_S(L) that **F** < **M**_S.

The next statement is now pretty obvious, and will not be proved.

COROLLARY 2. For the simple Lie algebra S the functor \mathbf{M}_{S} is maximal with respect to the order relation <, it is also maximal with respect to the order relation \subset if, and only if, $\mathbf{M}(S)$ is the set of all maximal subalgebras of S.

There is a further remarkable property of the functor \mathbf{M}_{S} : for every Lie algebra L and for every ideal I of L, one has that $M \in \mathbf{M}_{S}(L)$ implies $I \cap M \in \mathbf{M}_{S}(I)$. Also the Levi functor **S** has this property. This property suggests the following definition.

DEFINITION. The functor **F** is called *ideal* (respectively, *radical*) if one has for every Lie algebra L and every $F \in \mathbf{F}(L)$ that $F \cap I \in \mathbf{F}(I)$ for every ideal I of L (respectively, $F \cap \mathbf{R}(L) \in \mathbf{F}(\mathbf{R}(L))$).

We now restate our results as a contrast and motivation for further considerations.

COROLLARY 3. If the (ideal or radical) functor \mathbf{F} is maximal with respect to the order relation <, and if \mathbf{F} does not coincide with the universal functor \mathbf{U} on the class of all simple Lie algebras, then $\mathbf{F} = \mathbf{M}_{\mathrm{S}}$ for some simple Lie algebra S.

LEMMA. If the ideal functor \mathbf{F} coincides with the universal functor \mathbf{U} on the class of all simple Lie algebras, then it coincides with \mathbf{U} on the class of all semi-simple Lie algebras. That is, \mathbf{S} , the Levi functor, satisfies $\mathbf{S} < \mathbf{F}$.

Proof. If L is a semi-simple Lie algebra and $F \in \mathbf{F}(L)$, then one has $F \cap S \in \mathbf{F}(S)$ for every simple direct summand of L, since **F** is ideal. As **F** coincides with **U** on S, one has $F \cap S = S$. But then $F = L \in \mathbf{F}(L)$, and **F** coincides with **U** on L. If L is now an arbitrary Lie algebra and $F \in \mathbf{F}(L)$, then F must contain (or rather map onto) a Levi subalgebra of L, hence $\mathbf{S} < \mathbf{F}$.

THEOREM 2. If the radical functor $\mathbf{F} \neq \mathbf{U}$ satisfies $\mathbf{S} < \mathbf{F}$, then either $\mathbf{F} = \mathbf{S}$, or \mathbf{F} coincides with C, the Cartan functor on the class of all soluble Lie algebras.

Proof. If $\mathbf{F} \neq \mathbf{S}$, the \mathbf{F} cannot coincide with \mathbf{O} on the class of all soluble Lie algebras. Barnes and Gastineau-Hills have shown that except for \mathbf{O} the only functors on the class of all soluble Lie algebras are the Cartan functor \mathbf{C} and the universal functor. If \mathbf{F} coincides with \mathbf{U} on the class of all soluble Lie algebras and if $\mathbf{F} \in \mathbf{F}(\mathbf{L})$ for any Lie algebra \mathbf{L} , then $\mathbf{F} \cap \mathbf{R}(\mathbf{L}) = \mathbf{R}(\mathbf{L})$. Since \mathbf{F} contains a Levi subalgebra \mathbf{A} by assumption, one has $\mathbf{F} \supseteq \mathbf{A} +$ $+ \mathbf{R}(\mathbf{L}) = \mathbf{L}$. Hence $\mathbf{F} = \mathbf{L}$; and \mathbf{F} coincides with \mathbf{U} , contrary to our assumption. Thus, if $\mathbf{S} \neq \mathbf{F} \neq \mathbf{U}$, the functor \mathbf{F} must coincide with the Cartan functor \mathbf{C} on the class of all soluble Lie algebras.

Consider the hypothetical situation of Theorem 2, that is a radical functor **F** satisfying **S** < **F**, which coincides with C on the class of soluble Lie algebras. For any Lie algebra L let $F \in \mathbf{F}(L)$, then F = C + A, where C is a Cartan subalgebra of **R**(L) and A is a Levi subalgebra of L. Clearly, C is an ideal of F, and since C is its own idealiser in **R**(L), one has that $F = \{l \in L; l \circ C \subseteq C\}$.

DEFINITION. The rule I selects in every Lie algebra L the set I(L) of idealisers in L of the Cartan subalgebras of $\mathbf{R}(L)$.

THEOREM 3. The rule \mathbf{I} is a radical functor satisfying $\mathbf{S} < \mathbf{I}$.

Proof. By Barnes [I] one has $I + \mathbf{R}(L) = L$ for every Lie algebra L and every $I \in \mathbf{I}(L)$. Thus I must contain a Levi subalgebra of L. This shows S < I. If φ is a homomorphism of L, then $\mathbf{R}(L^{\varphi}) = (\mathbf{R}(L))^{\varphi}$, and Cartan subalgebras of $\mathbf{R}(L)$ are mapped to Cartan subalgebras of $\mathbf{R}(L^{\varphi})$. Also the Levi subalgebras of L are mapped to those of L^{φ} . Since the Cartan subalgebra C^{φ} of the soluble Lie algebra $\mathbf{R}(L^{\varphi})$ is its own idealiser in $\mathbf{R}(L^{\varphi})$, it follows that the idealiser of C^{φ} in L^{φ} is of the form I^{φ} with $I \in \mathbf{I}(L)$. This shows the invariance of the rule \mathbf{I} under homomorphisms. If $I \in \mathbf{I}(L)$ then $\mathbf{R}(L)$ idealises a Cartan subalgebra of $\mathbf{R}(L)$, thus $\mathbf{R}(L)$ is nilpotent and so its only Cartan subalgebra. Hence $\mathbf{I}(L) = \{L\}$. Let B be an intermediate subalgebra of $L: I \subseteq B \subseteq L$ for some $I \in \mathbf{I}(L)$; then $\mathbf{R}(B) = B \cap \mathbf{R}(L)$, and the Cartan subalgebra C of $\mathbf{R}(L)$ idealised by I is still a Cartan subalgebra of $\mathbf{R}(B)$. Thus \mathbf{I} is a functor; clearly, it is radical.

COROLLARY. The Levi functor **S** is the only ideal functor $\mathbf{F} \neq \mathbf{U}$ coinciding with U on the class of simple Lie algebras.

Proof. Let **F** be such a functor. Since it coincides with **U** on the simple Lie algebras, the Lemma gives us that $\mathbf{S} < \mathbf{F}$. An ideal functor is in particular also radical. Thus Theorems 2 and 3 together yield that either $\mathbf{F} = \mathbf{S}$ or $\mathbf{F} = \mathbf{I}$. The ideal functor **F** defines an ideal functor on the class of all soluble Lie algebras, but there only the trivial functors **O** and **U** are ideal. Thus **F** cannot define the Cartan functor on the class of soluble Lie algebras. Hence $\mathbf{F} \neq \mathbf{I}$.

We have thus obtained a complete survey of all the maximal ideal functors and of those maximal radical functors which do not coincide with the universal functor \mathbf{U} on the class of soluble as well as on the class of simple Lie algebras.

2. DIAGONAL FUNCTORS

If the functor \mathbf{F} coincides with the universal functor \mathbf{U} on the class of all simple Lie algebras, but not on the class of semi-simple Lie algebras, we shall call \mathbf{F} a *diagonal functor*.

If \mathbf{F} is a diagonal functor, then there is a simple Lie algebra such that \mathbf{F} does not coincide with \mathbf{U} on the class of all (finite) direct sums of copies of S. The reason for calling these functors *diagonal* will be apparent from the following result.

PROPOSITION. If the functor **F** coincides with the universal functor **U** on the simple algebra S, but not on the class of all direct sums of copies of S, then one has for every $L = \bigoplus_{i=1}^{n} S_i$, $S \simeq S_i$, and for every $F \in \mathbf{F}(L)$, that $F \simeq S$.

Proof. Let L be the direct sum of the minimal number m of copies of S, $L = \bigoplus_{i=1}^{m} S_i$, $S \simeq S_i$ so that $\mathbf{U}(L) \neq \mathbf{F}(L)$. The subalgebra $F \in \mathbf{F}(L)$ is a subdirect sum of the m copies of S. Let S_1 be an arbitrary minimal ideal of L. If the intersection $F \cap S_1 \neq (0)$, then $S_1 \subseteq F$. But then $F/S_1 \neq L/S_1$. On the other hand, $F/S_1 \in \mathbf{F}(L/S_1) = \mathbf{U}(L/S_1)$, by the minimality of L. These two statements contradict each other! Hence, for every minimal ideal S_1 of L one has $S_1 \cap F = (0)$. Minimality of L yields again that $S_1 + F = L$. But then F must contain a non-trivial ideal of L, unless m = 2 and F is a diagonal. This establishes in particular, the Proposition for the direct sum of two copies of S.

Suppose the Proposition has been proved for direct sums of fewer than n copies of S, and Let $L = \bigoplus_{i=1}^{n} S_i$. The subalgebra $F \in \mathbf{F}(L)$ is a subdirect sum of the S_i . Since n > 2, and $(F + S_i)/S_i$ is simple, by induction, one has that F is a direct sum of at most two copies of S. Hence, there is a minimal ideal S_1 , say, of L with $F \cap S_1 = (0)$; and one obtains that $F \simeq (F + S_1)/S_1$ is simple.

Remark. For such a Lie algebra $L = \bigoplus_{i=1}^{n} S_i$ with $S \simeq S_i$ and for every $F \in \mathbf{F}(L)$ there are *n* isomorphisms $\varphi_i : S \to S_i$ so that $F = (S^{\varphi_1}, \dots, s^{\varphi_n}); s \in S$, i.e. F is the *diagonal* of the S_i with respect to the isomorphisms $\{\varphi_i\}$.

DEFINITION. For the simple Lie algebra S we now define a *diagonal* rule \mathbf{D}_{S} on the class of all Lie algebras. If L is a semi-simple Lie algebra, then $L = L_{\{S\}} \oplus L_{\{S\}}'$, where $L_{\{S\}}$ is the direct sum of the minimal ideals

37. - RENDICONTI 1976, vol. LX, fasc. 5

of L isomorphic to S and $L_{\{S\}}'$ is the direct sum of the minimal ideals of L not isomorphic to S; put

$$\mathbf{D}_{S}(L) = \{D + L_{\{S\}'}; D \text{ diagonal in } L_{S}\}.$$

For the arbitrary Lie algebra L choose a Levi subalgebra A and put

$$\mathbf{D}_{\mathrm{S}}(\mathrm{L}) = \{\mathrm{D} + \mathbf{R}(\mathrm{L}) ; \mathrm{D} \in \mathbf{D}_{\mathrm{S}}(\mathrm{A})\}.$$

THEOREM 4. The rule \mathbf{D}_{S} is a functor maximal with respect to the ordering \subset . For every diagonal functor \mathbf{F} there is a simple Lie algebra S so that $\mathbf{F} < \mathbf{D}_{S}$.

Proof. If $L \in \mathbf{D}_{S}(L)$, then—from the definition of \mathbf{D}_{S} —any Levi subalgebra of L can have at most one direct summand isomorphic to S. But in that case the definition of \mathbf{D}_{S} yields $\{L\} = \mathbf{D}_{S}(L)$. If $D \in \mathbf{D}_{S}(L)$ and M is any intermediate subalgebra of $L: D \subseteq M \subseteq L$. Then one has $M = (A_{\{S\}'} + \mathbf{R}(L)) + (M \cap A_{\{S\}})$ for every Levi subalgebra A of L. Since $M \cap A_{\{S\}}$ contains a diagonal of $A_{\{S\}}$ (viz. $D \cap A_{\{S\}}$), the algebra $(M \cap A_{\{S\}})$ must be a direct sum of copies of S. And a diagonal of $A_{\{S\}}$ remains a diagonal of $M \cap A_{\{S\}}$. Thus $D \in \mathbf{D}_{S}(M)$.

If M is a Lie algebra with Levi subalgebra B and if φ is a homomorphism of L onto M such that $A^{\varphi} = B$, then clearly φ maps every diagonal of $A_{\{s\}}$ to one of $B_{\{s\}}$ and $B_{\{s\}'} + \mathbf{R}(M) = (A_{\{s\}'} + \mathbf{R}(L))^{\varphi}$. Hence for every subalgebra $D \in \mathbf{D}_{S}(L)$ one has $D^{\varphi} \in \mathbf{D}_{S}(M)$. Thus \mathbf{D}_{S} is a functor.

That \mathbf{D}_{s} is maximal with respect to the order relation < is clear from the Proposition. Now let $\mathbf{F} \neq \mathbf{U}$ be a functor satisfying $\mathbf{D}_{s} \subseteq \mathbf{F}$. Since \mathbf{D}_{s} coincides with \mathbf{U} on the class of all Lie algebras without composition factor isomorphic to S, the axiomations of functors yields that there \mathbf{F} also coincides with \mathbf{U} . On the direct sums of copies of S, however, the Proposition yields that \mathbf{F} coincides with \mathbf{D}_{s} . Thus in the Lie algebra L the subalgebra $F \in \mathbf{F}(L)$ can differ from an element of $\mathbf{D}_{s}(L)$ at most in the intersection $F \cap \mathbf{R}(L)$. But that means $F + \mathbf{R}(L) \in \mathbf{D}(L)$. But now F and $F + \mathbf{R}(L)$ both are elements of $\mathbf{F}(L)$, hence of $\mathbf{F}(F + \mathbf{R}(L))$, and so—by axiom— $\mathbf{R}(L) \subseteq \mathbf{F}$. This shows that $\mathbf{F} = \mathbf{D}_{s}$.

Remarks. 1) Observe that the functor \mathbf{D}_s is radical. Thus, we now have obtained a complete survey of the maximal radical functors. 2) By modifying the definition of \mathbf{D}_s —essentially by replacing S by a set of simple Lie algebras—one may construct 2^{\aleph_0} distinct diagonal functors.

and the second second

COROLLARY. If the functor \mathbf{F} does not coincide with \mathbf{U} on the class of semisimple Lie algebras, then there is a simple Lie algebra S and a set \mathbf{M} (S) of maximal subalgebras of S such that either $\mathbf{F} < \mathbf{M}_{S}$ or $\mathbf{F} < \mathbf{D}_{S}$.

If the functor \mathbf{F} does not satisfy $\mathbf{F} < \mathbf{M}_{\rm S}$ or $\mathbf{F} < \mathbf{D}_{\rm S}$ for a suitable simple Lie algebra S and a set \mathbf{M} (S) of maximal subalgebras of S, then \mathbf{F} must coincide with the universal functor \mathbf{U} on the soluble as well as on the semisimple Lie algebras. Is there any such functor $\mathbf{F} \neq \mathbf{U}$? Is every such functor majorised by some maximal one? Describe the maximal functors in this class.

For the simple Lie algebra S let \mathbf{K}_{S} be the rule which associates to every Lie algebra L the set \mathbf{K}_{S} (L) of subalgebras of the form A + K (S), where A is a Levi subalgebra of L with the decomposition $A = A_{\{S\}} + A_{\{S\}'}$ and K (S) is the annihilator of $A_{\{S\}}$ in **R** (L). It is not difficult to prove.

THEOREM 5. The rule \mathbf{K}_{s} is a functor which coincides with \mathbf{U} on the soluble as well as the semi-simple Lie algebras.

It seems likely that \mathbf{K}_s is maximal with respect to <, but we have not been able to prove this. Replacing S by a set of simple Lie algebras one obtains similarly 2^{\aleph_0} distinct functors coinciding with **U** on the soluble as well as the semi-simple Lie algebras; but we do not know whether there are further essentially different functors in this class.

BIBLIOGRAPHY

- [1] D. W. BARNES (1973) The Frattini argument for Lie algebras, «Math. Zeitschr.», 133, 277-283.
- [2] D. W. BARNES and H. M. GASTINEAU-HILLS (1968) On the theory of soluble Lie algebras, «Math. Zeitschr.», 106, 343-354.
- [3] N. BOURBAKI (1960) Groupes et algèbres de Lie, Chap. 1; Hermann, Paris.
- [4] E. B. DYNKIN (1952) Semi-simple subalgebras of semi-simple Lie algebras, «Mat. Sbornik (N.S.)», 30 (72), 349-462; (1957) «American Math. Soc. Transl.», ser. 2, 6, 111-244.
- [5] J. E. HUMPHREYES (1972) Introduction to Lie Algebras and representation theory. Springer, New York-Heidelberg-Berlin.