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Chimica fisica. — Hf|f derivatives and Few Points Local Proce-
dures. Nota di GIANFRANCO MAJORINO, ALBERTO NAVA e ANGELO
SIRONI, presentata ) dal Socio M. SIMONETTA.

R1ASSUNTO. — Dall’equazione di Schrédinger Hu = Wu si ricava la condizione locale

SKHu/SxK= wsk u/b‘xK (1), in cui x indica una qualunque coordinata elettronica. Questa
condizione viene discussa:

@) In relazione al Lemma dei Momenti locali. Si dimostra qui che se una funzione f
soddisfa alle (1) in un punto arbitrario p per ogni K ed #, allora essa & autofunzione di H.

) In relazione alle Procedure Locali a pochi punti. Tali procedure vengono qui
generalizzate mediante la formula AHz () = WA (p), essendo A un generico operatore.

Si giustifica cosi da un punto di vista teorico I'uso dell’operatore A = 1 per la costru-
zione delle funzioni di prova e l'uso di A = §/8x come test di ottimizzazione di parametri.

Le nuove modalita di calcolo che derivano da questa analisi teorica sono state veri-
ficate con successo sui sistemi H ed H,.

a) INTRODUCTION

The Few Points Local Procedures [1] consist in building up a wave
function F satisfying a given number of analytic conditions in a given number
of configurational points. These conditions are directly deduced from the
Schrodinger equation Hu = Wz and are certainly satisfied by its exact eigen-
functions z.

In this paper we intend to examine in particular the condition:

8% Hu ()85 = W* u (p)/52%

(in which x is any electronic coordinate) in order to clarify two different points:

(i) Its: connection with the well-known local conditions [2, 3, 4]:

H* u () = WH* "« (p);
(ii) Its'theoretical placing in a generalized Few Points Local Procedure.

These theoretical considerations can be easily checked both through
atomic and through molecular computations.

In particular, a simpler local method than that proposed in [2] and a
simpler convergence test than that proposed in [1] have been deduced and
numerically checked with satisfactory results.

(*¥) Nella seduta del 10 aprile 1976.
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b) DERIVATIVE CONDITIONS AND LOCAL MOMENT LEMMA

The so called Local Moment Lemma [2] states that if a function 7 satisfies
in a given point p all the possible relations of the type H" £ (p) = EH*"'f (2,
or, which is the same:

(1) Hf(p) = EXf (p)

then f is an eigenfunction of H and E is the related eigenvalue.
Instead of (1) we can consider in p other relations of the type:

(2) Hf™ (p) = Ef™ ()

where s indicates a generic derivative along any direction.

A new Lemma can then be stated in which the conditions (1) are sub-
situted by the conditions (2). More precisely, we can demonstrate the following
theorem:

If a function f satisfies rel. (2) for all the derivatives up to a given order M
then relation (1):

H'f (p) = E* 7 ()

is also satisfied for all the integers b <MJ2 -+ 1.
- To demonstrate this it is convenient to rewrite (2) in the more detailed
form (indicating with ¢, - - - ¢, the electron coordinates):

(3" HfI83} - - - 83y = E (3" £33 -3},
or, with obvious notations:

w
(for any o < <M; for any integer j; > o with 3, j; = m).
1

‘Further more, from the general expression of the Hamiltonian operator:
w
H=— X 823 + V(@ -q0)
it follows by inspection that its powers can be written as:

: 2%
@) HE = 3 AJ 5, 33} - -dgly
where for each 7 the sum is extended to all possible integers 7, +- - -+ 7, = .

The A® coefficients are obviously formed by the powers of the potential
V and its derivatives.
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Now, for a fixed £ <M/2 we can multiply all the relations (3) where
n <2k by the correspondmg A .4 SUmMming with respect to m we
obtain:

E A(k) S Hin]] EZA(k) e F,],%]w

From (3) and (4) it follows that this relation can be rewritten as
U f = EHF

where from rel. (1) can be deduced in a recursive way.

Taking into account the Local Moment Lemma, it follows that if in a
given configurational point a function f satisfies rel. (2) for any 4, then f is
an exact eigenfunction of H, and E is the corresponding eigenvalue.

¢) DERIVATIVE CONDITIONS AND FEW POINTS LOCAL PROCEDURE

The Few Points Local Procedure [1] can be generalized by applying
an arbitrary operator A to both the members of the Schridinger equation
Hu = Wz. In a particular configurational point p we can then write:

AHu (p) = WA« ()

so obtaining an infinite number of conditions ceftainly satisfied by the exact
eigenfunctions # for any A and p. When A is a power of H we can then
obtain the so called “‘ Local Moment " relations [4, 5, 6] of the general type:

Su(p)H " e (p)) = H u (p)/H" " (py)

whereas for A = §/8x (where x is an arbitrary direction) we obtain the rela-
tions discussed in the preceding paragraphs, which are not directly connected
with the classical method of Moments [4, 7].

From a general point of view we can state the following theorem:

If fir-fw is a complete basis for a given ecigenfunction wu, then the
problem of building up a linear combination ¥ = Zcg fx isuch that:

() AHF (p)/AF (#1) =- - - = AHF (px)/AF (pn) = E

admit the solution F =u, E =W independently of the particular p,-- - px
set. , S

The demonstration can be easily obtained with the same procedure used
in [1] for the particular case A = 1.

In this approach the problem of solving the Schridinger equation is thus
reduced to the problem of finding a different complete basis £;- - -y for each
of its eigenfunctions. When the fx set depends upon one or more adjustable

30. — RENDICONTI 1975, vel. LX, fasc. 4.
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parameters, we can utilize two different operators A, , A, with the following
procedure:
@) To fix a given parameter set and a given configurational point set;

6) To build up an F function satisfying the N relations (5) for the first
operator Ay;

¢) To evaluate the variability of the ratios A HF (2)/A; F (p4) in the
fixed P,-.-Py set, e.g. through its variance around the mean value
(Ag ) = N-1XA, HF (p,)/A, f(#;) or around the E value obtained in &).

This variability can then be minimized both with respect to the confi-
gurational point set in which it is more convenient to perform the computa-
tions and with respect to the adjustable parameters.

This proceduré can be theoretically justified by developing the function

o0

F in terms of exact eigenfunctions [6]: F = E ags 1. In fact this expression
1

can be substituted in the ratio A,HF/A,F, so obtaining with further algebra:
AHF/AF = W, + ) a, Ay u, (W, — AHF/A, F)/a; A, ;.
2

Thus it appears evident that the variability of the ratios A, HF/A, F in
the N configurational points depends upon the expansion coefficients @, with
s > 1. If the F function obtained with procedure 4) is a good approximation
of 2, then the coefficients a, with s > 1 are small, and we have in general a
small variability.

Physically, with an obvious generalization of the considerations reported
in [6], the energy error W; — E can be written as:

(6) W, —E = Y, (W,—E) ,D,/a, D
N+1

where:

Ay (Pl) s Ajuy (Pl)

Ayuy (pn) - Ay un (Px)

and Dy is obtained substituting in D the function z, of the first column with
the function #,. It-appears evident from (6) that the error in the energy depends
upon the coefficients ax with K > N. Furthermore, taking A; = 1 the ele-
ments of the D, determinants are simply the values of the normalized
eigenfunctions in the configurational points g, which are in general very small
numbers [6]. Onthe contrary, for A; = 1 the D, determinants formed through
the Aug (p;) elements can assume in general arbitrarily big values. This is
the case for instance of A; = §/8x, where the derivatives 8z, (#;)/3x can tend
to infinite values. This seems to be a good argument to justify the particular
choice A; = 1 of Ref. [1], and it can explain the numerical difficulties connected
with the choice of A; = H* used in preceding approaches [2, 3, 4]



G. MAJORINO ed ALTRI, Hf|f derivatives and Few Points Local, ecc. 459

d) NUMERICAL EXAMPLES

It is obviously easier to evaluate the local values of the derivatives
Hf™ and ™ (in an analytical as well as in a numerical way) than the Hamil-
tonian powers H* /.

From this point of view the connection stated in section &) between LML
and derivative conditions leads in an obvious manner to elaborating a
numerical proeedure which is in principle more convenient than that proposed
in [3].

This connection has been checked on the hydrogen atom, starting from
three 1s Slater type orbitals f; with exponents 0.8, 1.1, and I.2.

E
TO 0.7 0.9 11 1.3 15 17 1.9

”

4

- 050 |

~051|

-0.52]

Fig. 1. — Hydrogen atom ground state energy evaluation repeating the
calculations for .6 <7 < 2.0 awu. (I) present method, (II) L.C. method.
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From this basis we built a function f = Z¢, f;, evaluating the ¢; coefficients
by the conditions: '

(@™ Hf|drm), = E (d™f|dr™), (m = 0,1, 2)

taking care that the ground state is described by the only variable 7.

Repeating the calculations for several points we obtained the plot of
E vs 7 reported in fig. 1.

In each point the relation H%/Hf = Hf|f = E has been completely
verified.

In fig. 1 we show also the graph obtained with the LC method [3] applied
to the best couple of our trial functions.

A second set of computations has been made in connection with the
considerations in section ¢). The main computational result of the general
theory here presented is that any measure of the variability of the ratios
A; HF (£)/As F () could in principle be used in order to optimize the
parameters of a given trial function set /;- - -fy. In a preceding paper [1] such
variability has been evaluated on the H, system with the formula:

N
T, = )] D%/Fk
K=1

where Dk = (8 (HF/F)/3p)k -+ (8 (HF/F)/8p,)% and p, and P are the two
electron positions of each point Pgx. The disadvantage of this formula is that
the F function must be normalized in order to compare different sets of trial
functions.

Taking into account the considerations of section ¢) a new goodness test
T has been checked under the form:

T — (EDY/FR/EFY

TABLE 1.
Hy energy evaluation (in a.a) in 2 and 3 point computations for correlated
‘ N
JSunctions of the type F = (1 -+ Z K 7?2{) (1 sa + 1 $B)1ye (af — Ba). The confi-
1

gurational point coordinates are P, = P, (— X ,0,0,X ,0,0); d is the charge
parameter of the 1s orbitals.

N X o Cy 4 2y d E Error
2 ' | 1.8355.|—0.0376 | — 1.30 — I.20 | —1.23 6%
3 2.0 0.0093 | 0.0070 | 3.20 3.32 1.20 | —I.15, 2%
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This test can be interpreted in the sense that the D% deviations (which are
zero for the exact eigenfunction) must be weighted with the pounds 1/F¥%,
or in the sense that the variations Dk of the ratios HF/F must be evaluated
in F% unities. }

We used trial functions of the type [8]:

N
F = (I 4+ éOCK 7’?2{) (I .S'A"—i- I sB)l (I sa+1 53)2 (OCB'—-— BO()

with N = 1 and N = 2. The results are reported in Table I; both the para-
meter X characterizing the electron position P, =P, (— X ,0,0,X,0,0)
and the 7g correlation exponents have been optimized by the T test.

In spite of the very small number of configurational points, the energy
results are in good agreement with the theoretical value E = — 1.174 a.u.
for an internuclear distance of 1.4 a.u. [9]. :

Finally, several optimizations on the parameters of the bases of Ref. [1]
have been performed with the T test.

In all the cases we obtained the same results as in [1], so confirming the
theoretical considerations in section ¢).
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