ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

SAMUEL A. ILORI

Spaces of real Grassmannians

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 60 (1976), n.4, p. 414-421.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_60_4_414_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1976_8_60_4_414_0
http://www.bdim.eu/

414 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LX — aprile 1976

Geometria algebrica. — Spaces of real Grassmannians. Nota, di
SamueL A. ILori, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Se 7 ,m ,d sono interi soddisfacenti le 1 <m < d < 7, si dimostra
che Iinsieme G,, (R% R) di tutte le Grassmanniane reali Gy, (R?) giacenti in una data G,, (R®)
¢ una varieta topologica compatta ed un CW-complesso, di dimensione 7 (4 + 1 —m) (n—d).

§ 1. INTRODUCTION

Let G, (R?, R™) be the set of all real Grassmannians G,, (R%) which are
subspaces of a Grassmannian G, (R"), 1 <m <d <#. In § 2, we show
that G, (R?, R") is a compact Hausdorff space. In §3, we prove that
Gp (R*, R") is a topological manifold and a CW-complex of dimension
m(d +1—m)(n—d). Also one finds that for all m > 1, G, (R™, Rm+)
is homeomorphic to S™, the m-dimensional standard sphere. Finally, one
deduces that G, (R™, R") is not smooth if the pair (2, 7) satisfies

either m #1,2,4 or 8 and #>=>m + 2
or m =8 and % >m + 2.

Remark. In a similar way, one can consider the case of complex Grass-
mannians and one obtains that G,, (C?,C") is a compact topological manifold
and a CW-complex of complex dimension (4 + 1 —m)(n—d) for
1<m<d<mn.

§2. GENERALIZED REAL GRASSMANN SPACES G, (R?, R")

DEFINITION 2.1. A generalized real Grassmann space, G, (R%, R®),
1 <m <d <, is the set of all real Grassmannians G,, (R% which are sub-
spaces of a Grassmannian G, (R”).

From p. 323 of [3], the point

x=(a,-- S, x™) eV, (R n (erz—m+1>< . XRZ[mH)
(where
m—j j—1
. T . . — .
) = (0»"',0:95{:"'»952—”;4_1,O,"',O)
= (O, ..-,O,x{,-.-,xz_d,y{’.-.’y£+1_m’o,...’o>
_mi ) e
R?—m-'-l: {<O,"')O)‘21)"';€n—m+1,0,"',0>}, _/= L,---,m

(*) Nella seduta del 10 aprile 1976.



SAMUEL A. ILORI, Spaces of real Grassmannians 415

and V,, (R®) is the Stiefel manifold of s-frames in R”) determines a point in
G (R and every point of G, (R®) is determined by such a point. In the
same way, the space G, (R?,R" is determined by the equations

n--d
J’i=zvikx7]c (j=l,--~,m;z'=I,-'-,d—i—1~m).
k=1 :

Thus a point of G, (R%, R") is determined by an array

'z}l DY ‘Z}l Q)l
O R = (Vi, -, Vi) or :
1
Vd+1—m * " * vgb+1—m, Ogt1-m
where
Vje Vd+1—m<Rn>n (erljx"'XRg-i-l—mj)) _7= I,---,m2
wiGVm(R”)ﬂ(R%X"-XRy{m, i=1, -,d+1—m
and
m_jtizt a-mtizi
R?—m-l_l DR"Z} == {<O " Oy El:' * 'san—d-i-l 3y O, ';O>}

G<i<d+t+1—m;1<j<m).
Also every point of G,, (R%, R") is determined by such an array. Note that

1_1 m _m
Ay vy MRS 4]

1 1 m m
Ait1—m Yari—m *** MNt1-m Viti-m

where all the A are nonzero real numbers, determines the same point G,, (R%, R"®)
as (*) above. An array which determines a point of G, (R?, R®) can then
be considered as a member of the intersection V,, (R?, R")c A™ (where A
represents the (¢ + 1 — m)-fold Cartesian product R”X - - - X R?) of the Car-
tesian products

m

H [Vd+1—m (Rn> n (R?j XKoo X RZ+1—mj>]

Jj=1
and
d+1—m

IT [V (R 0 (R X Rin)
i=
We then have .a canonical function

¢:V, (R}, R") —>G,, (R4, RY)

which maps.each array to the member of G, (R?, R”?) which it determines.
We give G,, (R?, R®) the quotient topology.

Alternatively, let Vi, (R®) be the subset of Vg, (R®) consisting
of all (4 + 1 —m)-tuples of linearly independent unit vectors of R®. Then
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Gn (R% R®) can also be considered as an identification space of V, (R, R")
which is the intersection of

]__]1,- [Vari-m R™ N (RYX -+ X Rgi-l-mj)]
j= v

and
d+1—-m

]____[ [Vfr)n (Rn) n (Rritl>< e X R?m)]

One sees from the following diagram that both constructions yield the same
topology for G, (R%, R™).

Vo (R?, RH< V,, (R4, RY) — 2, V) (R?, R

AN /
AN /
AN / 7
70 0
A /

N /
N ¥

Gy (R?, R™)

Here g normalizes all the vectors in an array and ¢, denotes the restriction of
g to Vi, (R%, R»).

LEMMA 2.2.  The space of Grassmannians G, (R%,R"™) is a compact
Hausdorff space. Furthermore, the correspondence X — X' which assigns to
each X in G, (R%, R") its complement X* in G,, (R™) defines a homeomor phism
between G, (R?, R") and G, (Rmm-d-1 Rm),

Proof. The set V3, (R%, R") is a closed bounded subset of A™ and there-
fore is compact. It follows that G, (R?, R") = ¢, (V5 (R%, R") is also
compact. Consider the following diagram:

d+1—m
G (R%, RM< G (RDX -+ XG,, (R
N .
AN
\\ S
AN |
\\ |
N
R

Here f,, is defined as
fw (Xl PR Xd+1—m) = Po (Xl) “Po (Xd+1—m>>

where we R* and ¢, : G, (R%) — R is a continuous function (see the proof
of Lemma 5.1. in [4] for the definition of p,). Thus £, is continuous and so
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fo which is the restriction of £ to G,, (R%, R®) is also continuous. Now if X, Y
are distinct members of G,, (R?, R*) such that

XZ(XI""’Xd+1—m> and Y=<Y1:"'»Yd+l—'m):

and if w e X for some £ and ¢ Y, for all £, then £ (X) # fo (Y). This proves
that G,, (R?, R®) is Hausdorff space.
Finally define a function

SV (R, R -V, (Rrm=d1, Rm)

as follows. For each (Vy,---, Vm)‘e Vo (R*, R™)  which determines

Xe G, (R*, R") (where V;= (v{ 'ty Ustem)yJ =1 ,-++,m) complete the
basis {¢1,- -, ¥}11-m} SO that
; ) ) . Cmt1 ]
('U; P ')vgl+1—m ] %i [ %'gt—d)e V?Z—m+1 (R,'; " )3 J =1, m.
Put
Uj=<%iy"')%;z—d>s Z.‘___I,"',m~

Then (U, ,- -+, U,)€ V,, (R=m—d-1 Rn) determines X*. Now set
f(vl:' : )V’m) = (Uly' . )U'm)
and it follows that the following diagram is commutative.

Vi R%, R —L— V,, (Rtm—d-1 | R)

Gn (R?, R?) —2 > G, (Rrm-d-1 R

J is continuous implies gf is continuous. Thus the correspondence X +— X*
is also continuous. Also L is one-to-one. Using the same argument one

constructs an inverse function
.I., . Gm (R'n+m—d—1 , Rn) — Gm (Rd , Rn)

which is also continuous and one-to-one. Thus f is a homeomorphism.

§ 3. A CELL STRUCTURE FOR G,, (R%, R")

Let G, (R®) be represented by points
. x = (xl AN xm)e Vm (R") n <R2~m+1 Koo X Rz—m—#l)’

where
m—j Jj—1

— S ——— e A

1 ) J .
sz(O>"'>O’x1;'";xn—mﬂ’of":o): I <7 <m.
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The space G, (R®) contains subspaces

where G, (R™-'*%) is represented by points x = («',- -, x™) where
m—j ntj-m—k
xj:(o’...’o ,x{’...’xz" O,"',O)‘
By a generalized Schubert symbol o™ = (ay, ,-- -, a;) is meant a sequence

of 4 + 1 —m integers satisfying
m < a, Ly << ag < n.

For each symbol 6™, let ¢ (6™ < G, (R% R”) denote the set of all Grassman-

nians X such that

dim (X N G,, (R*™)) = i

and ‘ '
dim (X N G, (R"™1)) = o (/ — 1) , i=1, . d—m.

Let H: ™ R}™™ ' (1 <.j <m) denote the set of all unit vectors in
R” of the form

m—j

e A

(O""’O:El"":alc—mﬁ—l’o"":O)'

Also let H{;<c Ry, (1 <7< d+1—m;1 <j<m) denote the set of all
unit vectors in R” of the form

m—ji=1 d—mtj—i
(O:""Oyaly"',‘in—d+lyo""’o> with £J>O.

LEMMA 3.1. Eack Grassmannian X € ¢ (™) is determined uniquely by
an array

1
U1 . 'U;.n

1 m
Yit1-m **° Yit1-m

where vie H; N H?m‘”i_mH Jor all i,j.
Proof. (vi,---, 77" determines the m-plane
X N Gy, (R,
Now #] is required to lie in a 1-dimensional vector subspace of Hf; N Hm "

and to be a unit vector. The condition that its (m — j + 1)-th coordinate be
positive defines #7 uniquely, j = 1,---, 2. Note that

1 0
(@1, -, 2 € Vi (R™).
Next (v3,- -, 5 is required to determine an #-plane in the m-dimensional
2 2 q P

space
X N G,, (R
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such that #{ and ¢} are linearly independent and the o} are also unit vectors.
This implies that 2§ is a unit vector in a 1-dimensional subspace of

2; N H;m“_mH. Again since its (m —j - 2)-th coordinate is supposed to
be positive, this defines 2 uniquely, j = 1,---,m. Also

(@, -, o) Vi (R

and 2 and v} are linearly independent, ;7 = 1,---, 7. Continuing by induc-
tion, one obtains a unique array for X.

LEMMA 3.2. LZLez

d+1—-m
¢ (o™ = TIHY, N I Hyw " Hm1 .
6 F=1
Then ¢ (c™ < Vi, (R?, R™) is topologically an open cell of dimension
‘ d+1—m

m 21 (@i — £ —m + 1).

Furthermore q maps ¢’ (6™) homeomorphically onto e (c™).

Proof. The proof will be by induction on &. When & = » we have that
o™ = (a,,) and ‘

o (dm> — 1——! (H’lL] N H‘;m—m—i—l) ~ ]_—_[1 Int (Dllm_m>
‘ j= =

where Int (Dam*m) denotes the interior of an (a,, — m)-dimensional disk. Thus
in this case ¢’ (a,,) is topologically an open cell of dimension

m (@, — m)

and the lemma is true in this case.
Now assume, as an inductive hypothesis, that the lemma is true for all
cases of 4’ <<d. We shall now prove it for &’ = 4.

ev, (Gm) =¢ (am:' Ty dd) =

d+l—-m[ m a ot ) a .

= 11 [ TT HE 0 (Hym 7 H et >]
j=1

=1

. m
, a,—mi1 a,—my1
=€ (‘lm"":adﬂ)x[l—[Hgﬂ—mjn(Hld X"'XHng )]
Jj=1

m
= ‘?, (le PRI ad—l) X [ ]__I <H3+1—-mj n H;d_m+1)]

j=1

IR

m
B . a,—d
e (@m, +ya )X T[int (D4 ).
=1
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Thus by the inductive hypothesis ¢’ (¢™) is topologically isomorphic to the
Cartesian product of two open cells of dimensions

ad—m
m Z (Apifey — £ —m + 1) and m (a3 —d)
F=1

and this proves the first part of the lemma.
By Lemma 3.1 ¢ maps ¢’ (6™) in a one-to-one correspondence onto ¢ (¢™)
and since the spaces involved are Hausdorff, then ¢ is a homeomorphism.

COROLLARY 3.3. The generalized Grassmann space G,, (R, R") is a topo-
logical manifold of dimension
m(d 4+ 1—m)(n—d).
Proof. The proof follows easily from Lemma 2.2 and Lemma 3.2 since
G,RE, RN =¢(n—d+m,---,n).
n—m —+ 1
d—m -+ 1

Plex with underlying space G, (R, R"). Similarly taking the direct limit as
n — 0o, one obtains an infinite CW-complex with underlying space G,, (R%, R®).

THEOREM 3.4. 7he ( ) sets ¢ (6™) form the cells of a CW-com-

Proof. We first show that each member in the boundary of a cell ¢ (™)
belongs to a cell of lower dimension. Let &’ (¢™) be the closure of ¢’ (¢™) and
let € (c™) also be the closure of ¢ (¢™). Since & (¢™) is compact, the image of
¢’ (6™) is equal to é(c™). Hence every X in the boundary € (¢™) — ¢ (c™) is

determined by an array 1 m
A >

1 m
Yata-m *° ° Vd+1-m/

which belongs to &' (¢™) — e’ (6™). Now
(Z,%’...’z,%evm(Ram-lﬂ), 1 <i<d-+1—m.

Thus' o .
dim (X N G, (R m1+)) >4

for each 7 and we have that the generalized Schubert symbol v = (4, ,- - -, &)
associated with X must satisfy

by < by << by '
Hence dim (¢ (™)) < dim (¢ (¢™)). Together with Lemma 3.2, this completes
the proof that G, (R?, R®) is a finite CW-complex. )
Similarly G, (R, R®) with the direct limit topology is a CW-complex
for the same values of 7 and 4. The closure finiteness condition is satisfied
since each Xe€ G, (R?, R®) belongs to a finite subcomplex G, (R%, R™).

COROLLARY 3.5. For ‘cmy m, the infinite genevalized Grassmannian
G, (R™, R®) 2s @ CW-complex having one mr-cell e (r -+ m) for each integer
r>o0. The closure é(r +m)c G, (R™,R®) is equal to G, (R™, R™).

Proof. The proof follows immediately from the theorem.
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COROLLARY 3.6. The number of mr-cells in G, (R, R") is equal to the

number of partitions of v into at most d V' 1 — m integers each of which is
<n-—d.

Proof. To every generalized Schubert symbol 6™ = (a,, ,- - -, a5) with
dim (e (6™)) = mr, there corresponds a partition 7, ,- - -, 7; of » where 7; ,- -+, 7,
denotes the sequence obtained from @, —,---, a;—d by cancelling aﬁy
zeros which may appear at the beginning of this sequence. Clearly

1 <4, <ip < - <, <n—d
and s =d + 1 — .

COROLLARY 3.7. For amy m =1, the generalized Grassmann space
G, (R™, R™Y) 45 homeomorphic to S™, the m-dimensional standard sphere.

Proof. The cells of G, (R™, R™?) are ¢ (), the o-cell and ¢ (7 + 1)
the 7 — cell.  Also

Gy (R™, R™) == & (m + 1) .
Clearly é(m + 1) = ¢ (m -+ 1) y point o~ S™

COROLLARY 3.8. The generalized Grassmann space G, (R™,R") s not
smooth if the pair (m ,n) satisfies

either m=%*1,2,4 or 8 and # >m + 2

or m o= § and % > m + 2.

Proof. Suppose G, (R™, R") is smooth for the above values of # and 7.
Then using the cell structure of Corollary 3.5, the Duality Theorem (see e.g.
Theorem 11.10 of [4]) and induction on 7, one shows that the mod 2 cohomo-
logy ring H* (G, (R™, R";Z,) of G, (R™ R") is isomorphic to Z,[a]
subject to the, relation

Qrmtl — o

where a € H™ (G, (R™, R");Z,). This fact, however, contradicts the theo
rems of Adams [1] and Adem [2] (see for instance the remark on top of
p- 134 of [4]).
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